1. |
Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med, 2018, 24(4): 392-400.
|
2. |
Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3): 337-340.
|
3. |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65.
|
4. |
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol, 2017, 2(2): 135-143.
|
5. |
Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J Biol Med, 2018, 91(2): 143-149.
|
6. |
D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta, 2015, 451(Pt A): 97-102.
|
7. |
Dickson RP. The microbiome and critical illness. Lancet Respir Med, 2016, 4(1): 59-72.
|
8. |
Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock, 2016, 45(5): 475-482.
|
9. |
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med, 2016, 8(1): 51.
|
10. |
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484): 559-563.
|
11. |
Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 2016, 352(6285): 535-538.
|
12. |
Lukovic E, Moitra VK, Freedberg DE. The microbiome: implications for perioperative and critical care. Curr Opin Anaesthesiol, 2019, 32(3): 412-420.
|
13. |
Drago L, Toscano M, De Grandi R, et al. Persisting changes of intestinal microbiota after bowel lavage and colonoscopy. Eur J Gastroenterol Hepatol, 2016, 28(5): 532-537.
|
14. |
Hayakawa M, Asahara T, Henzan N, et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig Dis Sci, 2011, 56(8): 2361-2365.
|
15. |
Serbanescu MA, Mathena RP, Xu J, et al. General anesthesia alters the diversity and composition of the intestinal microbiota in mice. Anesth Analg, 2019, 129(4): e126-e129.
|
16. |
Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 43-54.
|
17. |
Becattini S, Littmann ER, Carter RA, et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med, 2017, 214(7): 1973-1989.
|
18. |
Schoster A, Mosing M, Jalali M, et al. Effects of transport, fasting and anaesthesia on the faecal microbiota of healthy adult horses. Equine Vet J, 2016, 48(5): 595-602.
|
19. |
Shakhsheer BA, Versten LA, Luo JN, et al. Morphine promotes colonization of anastomotic tissues with collagenase-producing Enterococcus faecalis and causes leak. J Gastrointest Surg, 2016, 20(10): 1744-1751.
|
20. |
Banerjee S, Sindberg G, Wang F, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol, 2016, 9(6): 1418-1428.
|
21. |
Wang F, Meng J, Zhang L, et al. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep, 2018, 8(1): 3596.
|
22. |
Babrowski T, Holbrook C, Moss J, et al. Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut-derived sepsis in mice during chronic morphine administration. Ann Surg, 2012, 255(2): 386-393.
|
23. |
Yatera K, Noguchi S, Mukae H. The microbiome in the lower respiratory tract. Respir Investig, 2018, 56(6): 432-439.
|
24. |
Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio, 2015, 6(2): e00037.
|
25. |
Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol, 2016, 1: 16031.
|
26. |
Panzer AR, Lynch SV, Langelier C, et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit Care Med, 2018, 197(5): 621-631.
|
27. |
Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol, 2016, 1(10): 16113.
|
28. |
Harris B, Morjaria SM, Littmann ER, et al. Gut microbiota predict pulmonary infiltrates after allogeneic hematopoietic cell transplantation. Am J Respir Crit Care Med, 2016, 194(4): 450-463.
|
29. |
Sands KM, Wilson MJ, Lewis MAO, et al. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J Crit Care, 2017, 37: 30-37.
|
30. |
Pirrone M, Pinciroli R, Berra L. Microbiome, biofilms, and pneumonia in the ICU. Curr Opin Infect Dis, 2016, 29(2): 160-166.
|
31. |
Dinan TG, Cryan JF. Gut-brain axis in 2016: brain-gut-microbiota axis-mood, metabolism and behavior. Nat Rev Gastroenterol Hepatol, 2017, 14(2): 69-70.
|
32. |
Feng Q, Chen WD, Wang YD. Gut microbiota: an integral moderator in health and disease. Front Microbiol, 2018, 9: 151.
|
33. |
Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112(Pt B): 399-412.
|
34. |
Mackos AR, Maltz R, Bailey MT. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation. Horm Behav, 2017, 88: 70-78.
|
35. |
Cui B, Su D, Li W, et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimers disease. J Neuroinflammation, 2018, 15(1): 190.
|
36. |
Hovens IB, van Leeuwen BL, Mariani MA, et al. Postoperative cognitive dysfunction and neuroinflammation; cardiac surgery and abdominal surgery are not the same. Brain Behav Immun, 2016, 54: 178-193.
|
37. |
Erny D, Prinz M. Microbiology: gut microbes augment neurodegeneration. Nature, 2017, 544(7650): 304-305.
|
38. |
Yang XD, Wang LK, Wu HY, et al. Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol, 2018, 18(1): 177.
|
39. |
Peng J, Xiao X, Hu M, et al. Interaction between gut microbiome and cardiovascular disease. Life Sci, 2018, 214: 153-157.
|
40. |
Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 2017, 8(1): 845.
|
41. |
Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol, 2018, 16(3): 137-154.
|
42. |
Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 2016, 165(1): 111-124.
|
43. |
Randrianarisoa E, Lehn-Stefan A, Wang X, et al. Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans. Sci Rep, 2016, 6: 26745.
|
44. |
Svingen GFT, Zuo H, Ueland PM, et al. Increased plasma trimethylamine-N-oxide is associated with incident atrial fibrillation. Int J Cardiol, 2018, 267: 100-106.
|
45. |
Yu L, Meng G, Huang B, et al. A potential relationship between gut microbes and atrial fifibrillation: trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int J Cardiol, 2018, 255: 92-98.
|
46. |
Pluznick JL. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int, 2016, 90(6): 1191-1198.
|
47. |
Yan Q, Gu Y, Li X, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol, 2017, 7: 381.
|
48. |
Natarajan N, Hori D, Flavahan S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics, 2016, 48(11): 826-834.
|
49. |
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA, 2013, 110(11): 4410-4415.
|
50. |
Andrade-Oliveira V, Amano MT, Correa-Costa M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol, 2015, 26(8): 1877-1888.
|