1. |
Liu YC, Cheng DL, Lin CL. <italic>Klebsiella</italic> <italic>pneumoniae</italic> liver abscess associated with septic endophthalmitis. Arch Intern Med, 1986, 146(10): 1913-1916.
|
2. |
Lee CR, Lee JH, Park KS, <italic>et al</italic>. Antimicrobial resistance of hypervirulent <italic>Klebsiella pneumoniae</italic>: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol, 2017, 7: 483.
|
3. |
Guo Y, Wang S, Zhan L, <italic>et al</italic>. Microbiological and clinical characteristics of hypermucoviscous <italic>Klebsiella pneumoniae</italic> isolates associated with invasive infections in China. Front Cell Infect Microbiol, 2017, 7: 24.
|
4. |
Rahim GR, Gupta N, Maheshwari P, <italic>et al</italic>. Monomicrobial <italic>Klebsiella pneumoniae</italic> necrotizing fasciitis: an emerging life-threatening entity. Clin Microbiol Infect, 2019, 25(3): 316-323.
|
5. |
马荣, 王晓丹, 聂大平. 高毒力肺炎克雷伯菌血流感染的临床特点. 中国感染控制杂志, 2018, 17(1): 26-30.
|
6. |
田李均, 王晓丽, 肖淑珍, 等. 医院内高黏液性肺炎克雷伯菌的流行分布、毒力基因及临床特征分析. 医学版, 2017, 37(1): 43-48.
|
7. |
Tan TY, Ong M, Cheng Y, <italic>et al</italic>. Hypermucoviscosity, rmpA, and aerobactin are associated with community-acquired <italic>Klebsiella</italic> <italic>pneumoniae</italic> bacteremic isolates causing liver abscess in Singapore. J Microbiol Immunol Infect, 2019, 52(1): 30-34.
|
8. |
Siu LK, Yeh KM, Lin JC, <italic>et al</italic>. <italic>Klebsiella pneumoniae</italic> liver abscess: a new invasive syndrome. Lancet Infect Dis, 2012, 12(11): 881-887.
|
9. |
Lawlor MS, O’connor C, Miller VL. Yersiniabactin is a virulence factor for <italic>Klebsiella pneumoniae </italic>during pulmonary infection. Infect Immun, 2007, 75(3): 1463-1472.
|
10. |
张杰, 喻华. 四川省人民医院肝脓肿患者血培养分离肺炎克雷伯杆菌铁系统基因携带情况的分析. 中国循证医学杂志, 2017, 17(8): 907-909.
|
11. |
Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev, 2007, 71(3): 413-451.
|
12. |
Sandy M, Butler A. Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev, 2009, 109(10): 4580-4595.
|
13. |
Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous)<italic> Klebsiella pneumoniae</italic>: a new and dangerous breed. Virulence, 2013, 4(2): 107-118.
|
14. |
Fang CT, Chuang YP, Shun CT, <italic>et al</italic>. A novel virulence gene in <italic>Klebsiella pneumoniae </italic>strains causing primary liver abscess and septic metastatic complications. J Exp Med, 2004, 199(5): 697-705.
|
15. |
Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: two different but complementary <italic>Klebsiella spp. </italic> phenotypes?. Virulence, 2017, 8(7): 1111-1123.
|
16. |
Russo TA, Olson R, Fang CT, <italic>et al</italic>. Identification of biomarkers for differentiation of hypervirulent<italic> Klebsiella</italic> <italic>pneumoniae </italic>from classical K. pneumoniae. J Clin Microbiol, 2018, 56(9): e00776-18.
|
17. |
叶璟, 黄金伟. 致肝脓肿高毒力肺炎克雷伯菌的表型及分子特征. 中国微生态学杂志, 2019, 31(6): 638-641, 646.
|
18. |
陈帆, 张艳亭, 乔慧捷, 等. 肺炎克雷伯菌肝脓肿的临床特征分析. 临床肝胆病杂志, 2016, 32(4): 764-768.
|
19. |
Ye M, Tu J, Jiang J, <italic>et al</italic>. Clinical and genomic analysis of liver abscess-causing <italic>Klebsiella pneumoniae </italic>identifies new liver abscess-associated virulence genes. Front Cell Infect Microbiol, 2016, 6: 165.
|
20. |
Gu DX, Huang YL, Ma JH, <italic>et al</italic>. Detection of colistin resistance gene mcr-1 in hypervirulent <italic>Klebsiella</italic> <italic>pneumoniae </italic>and <italic>Escherichia coli</italic> isolates from an infant with diarrhea in China. Antimicrob Agents Chemother, 2016, 60(8): 5099-5100.
|
21. |
陈洁, 邵鸿迎, 赵明, 等. 肺炎克雷伯菌毒力因子的分布特征及其对小鼠的致死性. 中国科技论文, 2015, 10(6): 659-662.
|
22. |
Hennequin C, Robin F. Correlation between antimicrobial resistance and virulence in <italic>Klebsiella pneumoniae</italic>. Eur J Clin Microbiol Infect Dis, 2016, 35(3): 333-341.
|
23. |
Yu WL, Ko WC, Cheng KC, <italic>et al</italic>. Comparison of prevalence of virulence factors for <italic>Klebsiella</italic> <italic>pneumoniae </italic>liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis, 2008, 62(1): 1-6.
|
24. |
Davoudi-Monfared E, Khalili H. The threat of carbapenem-resistant gram-negative bacteria in a Middle East region. Infect Drug Resist, 2018, 11: 1831-1880.
|
25. |
Lam MMC, Wick RR, Wyres KL, <italic>et al</italic>. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in <italic>Klebsiella</italic> <italic>pneumoniae </italic>populations. Microb Genom, 2018, 4(9): e000196.
|
26. |
Bailey DC, Alexander E, Rice MR, <italic>et al</italic>. Structural and functional delineation of aerobactin biosynthesis in hypervirulent <italic>Klebsiella pneumoniae</italic>. J Biol Chem, 2018, 293(20): 7841-7852.
|
27. |
Paauw A, Leverstein-van Hall MA, van Kessel KP, <italic>et al</italic>. <italic>Yersiniabactin</italic> reduces the respiratory oxidative stress response of innate immune cells. PLoS One, 2009, 4(12): e8240.
|
28. |
Bachman MA, Miller VL, Weiser JN. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog, 2009, 5(10): e1000622.
|
29. |
Schubert S, Picard B, Gouriou S, <italic>et al</italic>. <italic>Yersinia </italic>high-pathogenicity island contributes to virulence in <italic>Escherichia coli</italic> causing extraintestinal infections. Infect Immun, 2002, 70(9): 5335-5337.
|