- Department of Laboratory Medicine, the First Affliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China;
Peptidoglycan is an important component of bacterial cell wall, which plays an important role in maintaining the integrity of bacterial cell structure, stimulating immune response, and anti-infection. Peptidoglycan recycling is an indispensable process for bacterial cell growth and reproduction. In recent years, it has been reported that the peptidoglycan recycling is closely related to the occurrence and development of bacterial resistance, especially with the antibacterial activity of β-lactam antibiotics. In this paper, the relationship between peptidoglycan recycling and resistance is described by combining relevant reports and taking Mycobacterium tuberculosis and Pseudomonas aeruginosa as examples, so as to promote the understanding of bacterial resistance mechanisms and provide potential targets for the development of new antimicrobial drugs.
Citation: YANG Xianggui, XU Ying. Relationship between peptidoglycan recycling and resistance. West China Medical Journal, 2020, 35(8): 999-1003. doi: 10.7507/1002-0179.202006365 Copy
1. | Yin J, Mao Y, Ju L, <italic>et al</italic>. Distinct roles of major peptidoglycan recycling enzymes in β-lactamase production in <italic>Shewanella oneidensis</italic>. Antimicrob Agents Chemother, 2014, 58(11): 6536-6543. |
2. | Gil-Marqués ML, Moreno-Martínez P, Costas C, <italic>et al</italic>. Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in <italic>Acinetobacter baumannii</italic>. J Antimicrob Chemother, 2018, 73(11): 2960-2968. |
3. | Mayer C. Peptidoglycan recycling, a promising target for antibiotic adjuvants in antipseudomonal therapy. J Infect Dis, 2019, 220(11): 1713-1715. |
4. | Ropy A, Cabot G, Sánchez-Diener I, <italic>et al</italic>. Role of <italic>Pseudomonas aeruginosa</italic> low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure. Antimicrob Agents Chemother, 2015, 59(7): 3925-3934. |
5. | Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev, 2008, 32(2): 149-167. |
6. | 刘芳, 杨跃寰. 细菌细胞壁肽聚糖的研究. 四川理工学院学报(自然科学版), 2011, 24(6): 628-631. |
7. | 向思琴. 细菌细胞壁肽聚糖的结构与作用. 技术与市场, 2017(1): 169. |
8. | Charroux B, Capo F, Kurz CL, <italic>et al</italic>. Cytosolic and secreted peptidoglycan-degrading enzymes in drosophila respectively control local and systemic immune responses to microbiota. Cell Host Microbe, 2018, 23(2): 215-228.e4. |
9. | Wolf AJ, Underhill DM. Peptidoglycan recognition by the innate immune system. Nat Rev Immunol, 2018, 18(4): 243-254. |
10. | 宋娜娜, 宋静慧. 乳杆菌胞外多糖及肽聚糖抗肿瘤作用研究进展. 内蒙古医科大学学报, 2012, 34(6): 996-1000. |
11. | 金盼盼, 邓燕杰. 乳酸杆菌肽聚糖免疫作用的研究进展. 中国微生态学杂志, 2013, 25(4): 485-487. |
12. | Typas A, Banzhaf M, van den Berg van Saparoea B, <italic>et al</italic>. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell, 2010, 143(7): 1097-1109. |
13. | Reith J, Mayer C. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol, 2011, 92(1): 1-11. |
14. | Uehara T, Park JT. Peptidoglycan recycling. EcoSal Plus, 2008, 3(1). |
15. | Gisin J, Schneider A, Nägele B, <italic>et al</italic>. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol, 2013, 9(8): 491-493. |
16. | Borisova M, Gaupp R, Duckworth A, <italic>et al</italic>. Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase. MBio, 2016, 7(5): e00916-e00923. |
17. | Ghosh AS, Chowdhury C, Nelson DE. Physiological functions of <italic>D</italic>-alanine carboxypeptidases in <italic>Escherichia coli</italic>. Trends Microbiol, 2008, 16(7): 309-317. |
18. | Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015, 264(1): 182-203. |
19. | Gong L, Devenish RJ, Prescott M. Autophagy as a macrophage response to bacterial infection. IUBMB Life, 2012, 64(9): 740-747. |
20. | Domínguez-Gil T, Molina R, Alcorlo M, <italic>et al</italic>. Renew or die: the molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resist Updat, 2016, 28(28): 91-104. |
21. | Kocaoglu O, Carlson EE. Profiling of β-lactam selectivity for penicillin-binding proteins in <italic>Escherichia coli</italic> strain DC<sub>2</sub>. Antimicrob Agents Chemother, 2015, 59(5): 2785-2790. |
22. | Pérez-Gallego M, Torrens G, Castillo-Vera J, <italic>et al</italic>. Impact of AmpC derepression on fitness and virulence: the mechanism or the pathway?. mBio, 2016, 7(5): e01783-16. |
23. | Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol, 2013, 4: 128. |
24. | 音建华, 余志良, 裘娟萍, 等. 希瓦氏菌对 β-内酰胺类抗生素耐药的分子机制//第十三届全国抗生素学术会议论文集. 福州: 中国药学会抗生素专业委员会, 《中国抗生素杂志》杂志社, 《中国医药生物技术》杂志社, 2017: 249-250. |
25. | Bruning JB, Murillo AC, Chacon O, <italic>et al</italic>. Structure of the <italic>Mycobacterium tuberculosis</italic> <italic>D</italic>-alanine: <italic>D</italic>-alanine ligase, a target of the antituberculosis drug <italic>D</italic>-cycloserine. Antimicrob Agents Chemother, 2011, 55(1): 291-301. |
26. | Global Alliance for TB Drug Development. Handbook of anti-tuberculosis agents. Introduction. Tuberculosis (Edinb), 2008, 88(2): 85-86. |
27. | Halouska S, Chacon O, Fenton RJ, <italic>et al</italic>. Use of NMR metabolomics to analyze the targets of <italic>D</italic>-cycloserine in mycobacteria: role of <italic>D</italic>-alanine racemase. J Proteome Res, 2007, 6(12): 4608-4614. |
28. | Desjardins CA, Cohen KA, Munsamy V, <italic>et al</italic>. Genomic and functional analyses of <italic>Mycobacterium tuberculosis</italic> strains implicate ald in <italic>D</italic>-cycloserine resistance. Nat Genet, 2016, 48(5): 544-551. |
29. | Hong W, Chen L, Xie J. Molecular basis underlying <italic>Mycobacterium tuberculosis</italic> <italic>D</italic>-cycloserine resistance. Is there a role for ubiquinone and menaquinone metabolic pathways?. Expert Opin Ther Targets, 2014, 18(6): 691-701. |
30. | Cáceres NE, Harris NB, Wellehan JF, <italic>et al</italic>. Overexpression of the <italic>D</italic>-alanine racemase gene confers resistance to <italic>D</italic>-cycloserine in <italic>Mycobacterium smegmatis</italic>. J Bacteriol, 1997, 179(16): 5046-5055. |
31. | Feng Z, Barletta RG. Roles of <italic>Mycobacterium smegmatis</italic> <italic>D</italic>-alanine: <italic>D</italic>-alanine ligase and <italic>D</italic>-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor <italic>D</italic>-cycloserine. Antimicrob Agents Chemother, 2003, 47(1): 283-291. |
32. | Dhar N, Dubée V, Ballell L, <italic>et al</italic>. Rapid cytolysis of <italic>Mycobacterium tuberculosis</italic> by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother, 2015, 59(2): 1308-1319. |
33. | Cordillot M, Dubée V, Triboulet S, <italic>et al</italic>. <italic>In vitro</italic> cross-linking of <italic>Mycobacterium tuberculosis</italic> peptidoglycan by <italic>L</italic>,<italic>D</italic>-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother, 2013, 57(12): 5940-5945. |
34. | Dik DA, Madukoma CS, Tomoshige S, <italic>et al</italic>. Slt, MltD, and MltG of <italic>Pseudomonas aeruginosa</italic> as targets of bulgecin A in potentiation of β-lactam antibiotics. ACS Chem Biol, 2019, 14(2): 296-303. |
35. | Kaushik A, Gupta C, Fisher S, <italic>et al</italic>. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant <italic>Mycobacterium abscessus</italic>. Future Microbiol, 2017, 12(6): 473-480. |
36. | Kaushik A, Makkar N, Pandey P, <italic>et al</italic>. Carbapenems and rifampin exhibit synergy against <italic>Mycobacterium tuberculosis</italic> and <italic>Mycobacterium abscessus</italic>. Antimicrob Agents Chemother, 2015, 59(10): 6561-6567. |
37. | Silva JR, Govender T, Ge MR, <italic>et al</italic>. Simulating the inhibition reaction of <italic>Mycobacterium tuberculosis</italic> <italic>L</italic>,<italic>D</italic>-transpeptidase 2 by carbapenems. Chem Commun (Camb), 2015, 51(63): 12560-12562. |
38. | van Rijn SP, Zuur MA, Anthony R, <italic>et al</italic>. Evaluation of carbapenems for treatment of multi- and extensively drug-resistant <italic>Mycobacterium tuberculosis</italic>. Antimicrob Agents Chemother, 2019, 63(2): e01489-18. |
39. | Davies Forsman L, Giske CG, Bruchfeld J, <italic>et al</italic>. Meropenem-clavulanate has high <italic>in vitro</italic> activity against multidrug-resistant <italic>Mycobacterium tuberculosis</italic>. Int J Mycobacteriol, 2015, 4(Suppl 1): 80-81. |
40. | Kong KF, Jayawardena SR, Indulkar SD, <italic>et al</italic>. <italic>Pseudomonas aeruginosa</italic> AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB beta-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother, 2005, 49(11): 4567-4575. |
41. | Quale J, Bratu S, Gupta J, <italic>et al</italic>. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of <italic>Pseudomonas aeruginosa</italic> clinical isolates. Antimicrob Agents Chemother, 2006, 50(5): 1633-1641. |
42. | Asgarali A, Stubbs KA, Oliver A, <italic>et al</italic>. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in <italic>Pseudomonas aeruginosa</italic>. Antimicrob Agents Chemother, 2009, 53(6): 2274-2282. |
43. | Ho LA, Winogrodzki JL, Debowski AW, <italic>et al</italic>. A mechanism-based GlcNAc-inspired cyclophellitol inactivator of the peptidoglycan recycling enzyme NagZ reverses resistance to β-lactams in <italic>Pseudomonas aeruginosa</italic>. Chem Commun (Camb), 2018, 54(75): 10630-10633. |
44. | Torrens G, Sánchez-Diener I, Jordana-Lluch E, <italic>et al</italic>. <italic>In vivo</italic> validation of peptidoglycan recycling as a target to disable AmpC-mediated resistance and reduce virulence enhancing the cell-wall-targeting immunity. J Infect Dis, 2019, 220(11): 1729-1737. |
45. | Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T., 2015, 40(4): 277-283. |
46. | 胡燕, 白继庚, 胡先明, 等. 我国抗生素滥用现状、原因及对策探讨. 中国社会医学杂志, 2013, 30(2): 128-130. |
47. | Nakatani Y, Opel-Reading HK, Merker M, <italic>et al</italic>. Role of alanine racemase mutations in <italic>Mycobacterium tuberculosis</italic> <italic>D</italic>-cycloserine resistance. Antimicrob Agents Chemother, 2017, 61(12): e01575-17. |
48. | Rani C, Mehra R, Sharma R, <italic>et al</italic>. High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of <italic>Mycobacterium tuberculosis</italic> GlmU. Tuberculosis (Edinb), 2015, 95(6): 664-677. |
49. | Rullas J, Dhar N, Mckinney JD, <italic>et al</italic>. Combinations of β-lactam antibiotics currently in clinical trials are efficacious in a DHP-I-deficient mouse model of tuberculosis infection. Antimicro Agents Chemother, 2015, 59(8): 4997-4999. |
50. | Tran AT, Watson EE, Pujari V, <italic>et al</italic>. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat Commun, 2017, 8: 14414. |
51. | Kieser KJ, Baranowski C, Chao MC, <italic>et al</italic>. Peptidoglycan synthesis in <italic>Mycobacterium tuberculosis</italic> is organized into networks with varying drug susceptibility. Proc Natl Acad Sci USA, 2015, 112(42): 13087-13092. |
52. | Kumar P, Arora K, Lloyd JR, <italic>et al</italic>. Meropenem inhibits <italic>D</italic>,<italic>D</italic>-carboxypeptidase activity in <italic>Mycobacterium tuberculosis</italic>. Mol Microbiol, 2012, 86(2): 367-381. |
- 1. Yin J, Mao Y, Ju L, <italic>et al</italic>. Distinct roles of major peptidoglycan recycling enzymes in β-lactamase production in <italic>Shewanella oneidensis</italic>. Antimicrob Agents Chemother, 2014, 58(11): 6536-6543.
- 2. Gil-Marqués ML, Moreno-Martínez P, Costas C, <italic>et al</italic>. Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in <italic>Acinetobacter baumannii</italic>. J Antimicrob Chemother, 2018, 73(11): 2960-2968.
- 3. Mayer C. Peptidoglycan recycling, a promising target for antibiotic adjuvants in antipseudomonal therapy. J Infect Dis, 2019, 220(11): 1713-1715.
- 4. Ropy A, Cabot G, Sánchez-Diener I, <italic>et al</italic>. Role of <italic>Pseudomonas aeruginosa</italic> low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure. Antimicrob Agents Chemother, 2015, 59(7): 3925-3934.
- 5. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev, 2008, 32(2): 149-167.
- 6. 刘芳, 杨跃寰. 细菌细胞壁肽聚糖的研究. 四川理工学院学报(自然科学版), 2011, 24(6): 628-631.
- 7. 向思琴. 细菌细胞壁肽聚糖的结构与作用. 技术与市场, 2017(1): 169.
- 8. Charroux B, Capo F, Kurz CL, <italic>et al</italic>. Cytosolic and secreted peptidoglycan-degrading enzymes in drosophila respectively control local and systemic immune responses to microbiota. Cell Host Microbe, 2018, 23(2): 215-228.e4.
- 9. Wolf AJ, Underhill DM. Peptidoglycan recognition by the innate immune system. Nat Rev Immunol, 2018, 18(4): 243-254.
- 10. 宋娜娜, 宋静慧. 乳杆菌胞外多糖及肽聚糖抗肿瘤作用研究进展. 内蒙古医科大学学报, 2012, 34(6): 996-1000.
- 11. 金盼盼, 邓燕杰. 乳酸杆菌肽聚糖免疫作用的研究进展. 中国微生态学杂志, 2013, 25(4): 485-487.
- 12. Typas A, Banzhaf M, van den Berg van Saparoea B, <italic>et al</italic>. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell, 2010, 143(7): 1097-1109.
- 13. Reith J, Mayer C. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol, 2011, 92(1): 1-11.
- 14. Uehara T, Park JT. Peptidoglycan recycling. EcoSal Plus, 2008, 3(1).
- 15. Gisin J, Schneider A, Nägele B, <italic>et al</italic>. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol, 2013, 9(8): 491-493.
- 16. Borisova M, Gaupp R, Duckworth A, <italic>et al</italic>. Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase. MBio, 2016, 7(5): e00916-e00923.
- 17. Ghosh AS, Chowdhury C, Nelson DE. Physiological functions of <italic>D</italic>-alanine carboxypeptidases in <italic>Escherichia coli</italic>. Trends Microbiol, 2008, 16(7): 309-317.
- 18. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015, 264(1): 182-203.
- 19. Gong L, Devenish RJ, Prescott M. Autophagy as a macrophage response to bacterial infection. IUBMB Life, 2012, 64(9): 740-747.
- 20. Domínguez-Gil T, Molina R, Alcorlo M, <italic>et al</italic>. Renew or die: the molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resist Updat, 2016, 28(28): 91-104.
- 21. Kocaoglu O, Carlson EE. Profiling of β-lactam selectivity for penicillin-binding proteins in <italic>Escherichia coli</italic> strain DC<sub>2</sub>. Antimicrob Agents Chemother, 2015, 59(5): 2785-2790.
- 22. Pérez-Gallego M, Torrens G, Castillo-Vera J, <italic>et al</italic>. Impact of AmpC derepression on fitness and virulence: the mechanism or the pathway?. mBio, 2016, 7(5): e01783-16.
- 23. Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol, 2013, 4: 128.
- 24. 音建华, 余志良, 裘娟萍, 等. 希瓦氏菌对 β-内酰胺类抗生素耐药的分子机制//第十三届全国抗生素学术会议论文集. 福州: 中国药学会抗生素专业委员会, 《中国抗生素杂志》杂志社, 《中国医药生物技术》杂志社, 2017: 249-250.
- 25. Bruning JB, Murillo AC, Chacon O, <italic>et al</italic>. Structure of the <italic>Mycobacterium tuberculosis</italic> <italic>D</italic>-alanine: <italic>D</italic>-alanine ligase, a target of the antituberculosis drug <italic>D</italic>-cycloserine. Antimicrob Agents Chemother, 2011, 55(1): 291-301.
- 26. Global Alliance for TB Drug Development. Handbook of anti-tuberculosis agents. Introduction. Tuberculosis (Edinb), 2008, 88(2): 85-86.
- 27. Halouska S, Chacon O, Fenton RJ, <italic>et al</italic>. Use of NMR metabolomics to analyze the targets of <italic>D</italic>-cycloserine in mycobacteria: role of <italic>D</italic>-alanine racemase. J Proteome Res, 2007, 6(12): 4608-4614.
- 28. Desjardins CA, Cohen KA, Munsamy V, <italic>et al</italic>. Genomic and functional analyses of <italic>Mycobacterium tuberculosis</italic> strains implicate ald in <italic>D</italic>-cycloserine resistance. Nat Genet, 2016, 48(5): 544-551.
- 29. Hong W, Chen L, Xie J. Molecular basis underlying <italic>Mycobacterium tuberculosis</italic> <italic>D</italic>-cycloserine resistance. Is there a role for ubiquinone and menaquinone metabolic pathways?. Expert Opin Ther Targets, 2014, 18(6): 691-701.
- 30. Cáceres NE, Harris NB, Wellehan JF, <italic>et al</italic>. Overexpression of the <italic>D</italic>-alanine racemase gene confers resistance to <italic>D</italic>-cycloserine in <italic>Mycobacterium smegmatis</italic>. J Bacteriol, 1997, 179(16): 5046-5055.
- 31. Feng Z, Barletta RG. Roles of <italic>Mycobacterium smegmatis</italic> <italic>D</italic>-alanine: <italic>D</italic>-alanine ligase and <italic>D</italic>-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor <italic>D</italic>-cycloserine. Antimicrob Agents Chemother, 2003, 47(1): 283-291.
- 32. Dhar N, Dubée V, Ballell L, <italic>et al</italic>. Rapid cytolysis of <italic>Mycobacterium tuberculosis</italic> by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother, 2015, 59(2): 1308-1319.
- 33. Cordillot M, Dubée V, Triboulet S, <italic>et al</italic>. <italic>In vitro</italic> cross-linking of <italic>Mycobacterium tuberculosis</italic> peptidoglycan by <italic>L</italic>,<italic>D</italic>-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother, 2013, 57(12): 5940-5945.
- 34. Dik DA, Madukoma CS, Tomoshige S, <italic>et al</italic>. Slt, MltD, and MltG of <italic>Pseudomonas aeruginosa</italic> as targets of bulgecin A in potentiation of β-lactam antibiotics. ACS Chem Biol, 2019, 14(2): 296-303.
- 35. Kaushik A, Gupta C, Fisher S, <italic>et al</italic>. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant <italic>Mycobacterium abscessus</italic>. Future Microbiol, 2017, 12(6): 473-480.
- 36. Kaushik A, Makkar N, Pandey P, <italic>et al</italic>. Carbapenems and rifampin exhibit synergy against <italic>Mycobacterium tuberculosis</italic> and <italic>Mycobacterium abscessus</italic>. Antimicrob Agents Chemother, 2015, 59(10): 6561-6567.
- 37. Silva JR, Govender T, Ge MR, <italic>et al</italic>. Simulating the inhibition reaction of <italic>Mycobacterium tuberculosis</italic> <italic>L</italic>,<italic>D</italic>-transpeptidase 2 by carbapenems. Chem Commun (Camb), 2015, 51(63): 12560-12562.
- 38. van Rijn SP, Zuur MA, Anthony R, <italic>et al</italic>. Evaluation of carbapenems for treatment of multi- and extensively drug-resistant <italic>Mycobacterium tuberculosis</italic>. Antimicrob Agents Chemother, 2019, 63(2): e01489-18.
- 39. Davies Forsman L, Giske CG, Bruchfeld J, <italic>et al</italic>. Meropenem-clavulanate has high <italic>in vitro</italic> activity against multidrug-resistant <italic>Mycobacterium tuberculosis</italic>. Int J Mycobacteriol, 2015, 4(Suppl 1): 80-81.
- 40. Kong KF, Jayawardena SR, Indulkar SD, <italic>et al</italic>. <italic>Pseudomonas aeruginosa</italic> AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB beta-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother, 2005, 49(11): 4567-4575.
- 41. Quale J, Bratu S, Gupta J, <italic>et al</italic>. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of <italic>Pseudomonas aeruginosa</italic> clinical isolates. Antimicrob Agents Chemother, 2006, 50(5): 1633-1641.
- 42. Asgarali A, Stubbs KA, Oliver A, <italic>et al</italic>. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in <italic>Pseudomonas aeruginosa</italic>. Antimicrob Agents Chemother, 2009, 53(6): 2274-2282.
- 43. Ho LA, Winogrodzki JL, Debowski AW, <italic>et al</italic>. A mechanism-based GlcNAc-inspired cyclophellitol inactivator of the peptidoglycan recycling enzyme NagZ reverses resistance to β-lactams in <italic>Pseudomonas aeruginosa</italic>. Chem Commun (Camb), 2018, 54(75): 10630-10633.
- 44. Torrens G, Sánchez-Diener I, Jordana-Lluch E, <italic>et al</italic>. <italic>In vivo</italic> validation of peptidoglycan recycling as a target to disable AmpC-mediated resistance and reduce virulence enhancing the cell-wall-targeting immunity. J Infect Dis, 2019, 220(11): 1729-1737.
- 45. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T., 2015, 40(4): 277-283.
- 46. 胡燕, 白继庚, 胡先明, 等. 我国抗生素滥用现状、原因及对策探讨. 中国社会医学杂志, 2013, 30(2): 128-130.
- 47. Nakatani Y, Opel-Reading HK, Merker M, <italic>et al</italic>. Role of alanine racemase mutations in <italic>Mycobacterium tuberculosis</italic> <italic>D</italic>-cycloserine resistance. Antimicrob Agents Chemother, 2017, 61(12): e01575-17.
- 48. Rani C, Mehra R, Sharma R, <italic>et al</italic>. High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of <italic>Mycobacterium tuberculosis</italic> GlmU. Tuberculosis (Edinb), 2015, 95(6): 664-677.
- 49. Rullas J, Dhar N, Mckinney JD, <italic>et al</italic>. Combinations of β-lactam antibiotics currently in clinical trials are efficacious in a DHP-I-deficient mouse model of tuberculosis infection. Antimicro Agents Chemother, 2015, 59(8): 4997-4999.
- 50. Tran AT, Watson EE, Pujari V, <italic>et al</italic>. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat Commun, 2017, 8: 14414.
- 51. Kieser KJ, Baranowski C, Chao MC, <italic>et al</italic>. Peptidoglycan synthesis in <italic>Mycobacterium tuberculosis</italic> is organized into networks with varying drug susceptibility. Proc Natl Acad Sci USA, 2015, 112(42): 13087-13092.
- 52. Kumar P, Arora K, Lloyd JR, <italic>et al</italic>. Meropenem inhibits <italic>D</italic>,<italic>D</italic>-carboxypeptidase activity in <italic>Mycobacterium tuberculosis</italic>. Mol Microbiol, 2012, 86(2): 367-381.