1. |
Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol, 2019, 9: 713.
|
2. |
Khan G, Hashim MJ. Global burden of deaths from Epstein-Barr virus attributable malignancies 1990-2010. Infect Agent Cancer, 2014, 9(1): 38.
|
3. |
Odumade OA, Hogquist KA, Balfour HH Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev, 2011, 24(1): 193-209.
|
4. |
Yu J, Liang Q, Wang J, et al. REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene, 2017, 36(2): 182-193.
|
5. |
Dheekollu J, Wiedmer A, Sentana-Lledo D, et al. HCF1 and OCT2 cooperate with EBNA1 to enhance oriP-dependent transcription and episome maintenance of latent Epstein-Barr virus. J Virol, 2016, 90(11): 5353-5367.
|
6. |
De Leo A, Calderon A, Lieberman PM. Control of viral latency by episome maintenance proteins. Trends Microbiol, 2020, 28(2): 150-162.
|
7. |
Jiang L, Xie C, Lung HL, et al. EBNA1-targeted inhibitors: novel approaches for the treatment of Epstein-Barr virus-associated cancers. Theranostics, 2018, 8(19): 5307-5319.
|
8. |
Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004, 4(10): 757-768.
|
9. |
Humme S, Reisbach G, Feederle R, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA, 2003, 100(19): 10989-10994.
|
10. |
Wang L, Tian WD, Xu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. Cancer, 2014, 120(3): 363-372.
|
11. |
Messick TE, Smith GR, Soldan SS, et al. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Sci Transl Med, 2019, 11(482): eaau5612.
|
12. |
Henkel T, Ling PD, Hayward SD, et al. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science, 1994, 265(5168): 92-95.
|
13. |
Ling PD, Rawlins DR, Hayward SD. The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA, 1993, 90(20): 9237-9241.
|
14. |
Lu F, Chen HS, Kossenkov AV, et al. EBNA2 drives formation of new chromosome binding sites and target genes for B-cell master regulatory transcription factors RBP-jκ and EBF1. PLoS Pathog, 2016, 12(1): e1005339.
|
15. |
Rabson M, Gradoville L, Heston L, et al. Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J Virol, 1982, 44(3): 834-844.
|
16. |
Lu F, Wiedmer A, Martin KA, et al. Coordinate regulation of TET2 and EBNA2 controls the DNA methylation state of latent Epstein-Barr virus. J Virol, 2017, 91(20): e00804-17.
|
17. |
Anastasiadou E, Stroopinsky D, Alimperti S, et al. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia, 2019, 33(1): 132-147.
|
18. |
Bhattacharjee S, Ghosh Roy S, Bose P, et al. Role of EBNA-3 family proteins in EBV associated B-cell Lymphomagenesis. Front Microbiol, 2016, 7: 457.
|
19. |
Maruo S, Zhao B, Johannsen E, et al. Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc Natl Acad Sci USA, 2011, 108(5): 1919-1924.
|
20. |
Pei Y, Singh RK, Shukla SK, et al. Epstein-Barr virus nuclear antigen 3C facilitates cell proliferation by regulating cyclin D2. J Virol, 2018, 92(18): e00663-18.
|
21. |
Bazot Q, Deschamps T, Tafforeau L, et al. Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1. Nucleic Acids Res, 2014, 42(15): 9700-9716.
|
22. |
Styles CT, Paschos K, White RE, et al. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens, 2018, 7(1): 31.
|
23. |
Shukla SK, Jha HC, El-Naccache DW, et al. An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation. Oncotarget, 2016, 7(14): 18116-18134.
|
24. |
Zhang S, Pei Y, Lang F, et al. EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation. PLoS Pathog, 2019, 15(1): e1007514.
|
25. |
Bhattacharjee S, Bose P, Patel K, et al. Transcriptional and epigenetic modulation of autophagy promotes EBV oncoprotein EBNA3C induced B-cell survival. Cell Death Dis, 2018, 9(6): 605.
|
26. |
Gunnell A, Webb HM, Wood CD, et al. RUNX super-enhancer control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth. Nucleic Acids Res, 2016, 44(10): 4636-4650.
|
27. |
White RE, Rämer PC, Naresh KN, et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest, 2012, 122(4): 1487-1502.
|
28. |
Paschos K, Bazot Q, Ho G, et al. Core binding factor (CBF) is required for Epstein-Barr virus EBNA3 proteins to regulate target gene expression. Nucleic Acids Res, 2017, 45(5): 2368-2383.
|
29. |
Kang MS, Kieff E. Epstein-Barr virus latent genes. Exp Mol Med, 2015, 47(1): e131.
|
30. |
Nakada R, Matsuura Y. Crystal structure of importin-α bound to the nuclear localization signal of Epstein-Barr virus EBNA-LP protein. Protein Sci, 2017, 26(6): 1231-1235.
|
31. |
Szymula A, Palermo RD, Bayoumy A, et al. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome. PLoS Pathog, 2018, 14(2): e1006890.
|
32. |
Devergne O, Hatzivassiliou E, Izumi KM, et al. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol, 1996, 16(12): 7098-7108.
|
33. |
Luftig M, Prinarakis E, Yasui T, et al. Epstein-Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci USA, 2003, 100(26): 15595-15600.
|
34. |
Jiang Y, Yan B, Lai W, et al. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene, 2015, 34(50): 6079-6091.
|
35. |
Xiao L, Hu ZY, Dong X, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene, 2014, 33(37): 4568-4578.
|
36. |
Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene, 2014, 33(37): 4613-4622.
|
37. |
Meckes DG Jr, Gunawardena HP, Dekroon RM, et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci USA, 2013, 110(31): E2925-E2933.
|
38. |
Hurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol, 2017, 91(5): e02251-16.
|
39. |
Incrocci R, McAloon J, Montesano M, et al. Epstein-Barr virus LMP2A utilizes Syk and PI3K to activate NF-κB in B-cell lymphomas to increase MIP-1α production. J Med Virol, 2019, 91(5): 845-855.
|
40. |
Rancan C, Schirrmann L, Hüls C, et al. Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T Cells. PLoS Pathog, 2015, 11(6): e1004906.
|
41. |
Minamitani T, Ma Y, Zhou H, et al. Mouse model of Epstein-Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease. Proc Natl Acad Sci USA, 2017, 114(18): 4751-4756.
|
42. |
Ma SD, Tsai MH, Romero-Masters JC, et al. Latent membrane protein 1 (LMP1) and LMP2A collaborate to promote Epstein-Barr virus-induced B cell lymphomas in a cord blood-humanized mouse model but are not essential. J Virol, 2017, 91(7): e01928-16.
|
43. |
Zhu J, Kamara S, Cen D, et al. Generation of novel affibody molecules targeting the EBV LMP2A N-terminal domain with inhibiting effects on the proliferation of nasopharyngeal carcinoma cells. Cell Death Dis, 2020, 11(4): 213.
|
44. |
Ahmed M, Lopez-Albaitero A, Pankov D, et al. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight, 2018, 3(4): e97805.
|
45. |
Rechsteiner MP, Berger C, Zauner L, et al. Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol, 2008, 82(4): 1739-1747.
|
46. |
Moss WN, Lee N, Pimienta G, et al. RNA families in Epstein-Barr virus. RNA Biol, 2014, 11(1): 10-17.
|
47. |
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics, 2013, 14: 543.
|
48. |
Zerbe CM, Cole JL. Regulation of protein kinase R by Epstein-Barr virus EBER1 RNA. Biochemistry, 2020, 59(12): 1252-1260.
|
49. |
Lee N, Yario TA, Gao JS, et al. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. Proc Natl Acad Sci USA, 2016, 113(12): 3221-3226.
|
50. |
Dong M, Chen JN, Huang JT, et al. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol, 2019, 135: 30-38.
|
51. |
Vereide DT, Seto E, Chiu YF, et al. Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene, 2014, 33(10): 1258-1264.
|
52. |
Lung RW, Hau PM, Yu KH, et al. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma. J Pathol, 2018, 244(4): 394-407.
|