1. |
Kempker JA, Martin GS. The changing epidemiology and definitions of sepsis. Clin Chest Med, 2016, 37(2): 165-179.
|
2. |
Hawiger J, Veach RA, Zienkiewicz J. New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost, 2015, 13(10): 1743-1756.
|
3. |
Sweis R, Ortiz J, Biller J. Neurology of sepsis. Curr Neurol Neurosci Rep, 2016, 16(3): 21.
|
4. |
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, 315(8): 801-810.
|
5. |
Edgren E, Hedstrand U, Kelsey S, et al. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet, 1994, 343(8905): 1055-1059.
|
6. |
Karinch AM, Pan M, Lin CM, et al. Glutamine metabolism in sepsis and infection. J Nutr, 2001, 131(9 Suppl): 2535S-2538S; discussion 2550S-2551S.
|
7. |
Ghatak T, Azim A, Mahindra S, et al. Can Klebsiella sepsis lead to hyperammonemic encephalopathy with normal liver function?. J Anaesthesiol Clin Pharmacol, 2013, 29(3): 415-416.
|
8. |
Görg B, Wettstein M, Metzger S, et al. Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology, 2005, 41(5): 1065-1073.
|
9. |
Brusilow SW, Koehler RC, Traystman RJ, et al. Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics, 2010, 7(4): 452-470.
|
10. |
Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther, 2012, 92(3): 321-331.
|
11. |
Gonzalez-Usano A, Cauli O, Agusti A, et al. Hyperammonemia alters the modulation by different neurosteroids of the glutamate-nitric oxide-cyclic GMP pathway through NMDA-GABAA-or sigma receptors in cerebellum in vivo. J Neurochem, 2013, 125(1): 133-143.
|
12. |
Lee JM, Trauner M, Soroka CJ, et al. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology, 2000, 118(1): 163-172.
|
13. |
Trauner M, Arrese M, Soroka CJ, et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology, 1997, 113(1): 255-264.
|
14. |
Dufour JF, Turner TJ, Arias IM. Nitric oxide blocks bile canalicular contraction by inhibiting inositol trisphosphate-dependent calcium mobilization. Gastroenterology, 1995, 108(3): 841-849.
|
15. |
Spirlì C, Nathanson MH, Fiorotto R, et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology, 2001, 121(1): 156-169.
|
16. |
Spirlì C, Fabris L, Duner E, et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology, 2003, 124(3): 737-753.
|
17. |
Dhainaut JF, Marin N, Mignon A, et al. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med, 2001, 29(7 Suppl): S42-S47.
|
18. |
Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8): 762-774.
|
19. |
Guo J, Cheng Y, Wang Q, et al. Changes of rScO2 and ScvO2 in children with sepsis-related encephalopathy with different prognoses and clinical features. Exp Ther Med, 2019, 17(5): 3943-3948.
|
20. |
Maiti P, Singh SB, Sharma AK, et al. Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int, 2006, 49(8): 709-716.
|
21. |
Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol Med, 2005, 39(4): 429-443.
|
22. |
Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem, 2009, 109(Suppl 1): 133-138.
|
23. |
Ramanathan L, Gozal D, Siegel JM. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem, 2005, 93(1): 47-52.
|
24. |
Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal, 2005, 7(9/10): 1140-1149.
|
25. |
Degracia DJ, Kumar R, Owen CR, et al. Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab, 2002, 22(2): 127-141.
|