1. |
Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N EnglJ Med, 2018, 378(19): 1811-1823.
|
2. |
Upagupta C, Shimbori C, Alsilmi R, et al. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev, 2018, 27(148): 180033.
|
3. |
Booton R, Lindsay MA. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest, 2014, 146(1): 193-204.
|
4. |
Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 2006, 20(5): 515-524.
|
5. |
Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(738): 835-840.
|
6. |
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
|
7. |
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010, 11(9): 597-610.
|
8. |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
|
9. |
Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009, 19(1): 92-105.
|
10. |
Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res, 2016, 118(4): 703-720.
|
11. |
Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol, 2017, 18(1): 206.
|
12. |
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci, 2016, 73(13): 2491-2509.
|
13. |
黄明华, 曾林祥. 非编码 RNA 与肺纤维化的相关研究进展. 生命科学, 2019, 31(1): 55-60.
|
14. |
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009, 23(13): 1494-1504.
|
15. |
Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet, 2016, 32(5): 309-316.
|
16. |
Hsiao KY, Sun HS, Tsai SJ. Circular RNA - new member of noncoding RNA with novel functions. Exp Biol Med, 2017, 242(11): 1136-1141.
|
17. |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
|
18. |
Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082): 1941-1952.
|
19. |
周俊海, 黄瑞雪. 长链非编码 RNA 在肺纤维化中作用机制的研究进展. 中国药理学与毒理学杂志, 2018, 32(10): 805-809.
|
20. |
Ding Q, Luckhardt T, Hecker L, et al. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis. Drugs, 2011, 71(8): 981-1001.
|
21. |
Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res, 2011, 157(4): 191-199.
|
22. |
Chilosi M, Caliò A, Rossi A, et al. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-Ⅲ in idiopathic pulmonary fibrosis. Mod Pathol, 2017, 30(1): 26-38.
|
23. |
Yang S, Banerjee S, De Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol, 2012, 180(2): 484-493.
|
24. |
Cao Y, Liu Y, Ping F, et al. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways. Lab Invest, 2018, 98(3): 339-359.
|
25. |
Moimas S, Salton F, Kosmider B, et al. miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type Ⅱ alveolar epithelial cell transdifferentiation. ERJ Open Res, 2019, 5(4): 00138-2019.
|
26. |
Lei GS, Kline HL, Lee CH, et al. Regulation of collagenV expression and Epithelial-Mesenchymal transition by miR-185 and miR-186 during idiopathic pulmonary fibrosis. Am J Pathol, 2016, 186(9): 2310-2316.
|
27. |
Wang D, Liu Z, Yan Z, et al. MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3β during radiation-induced pulmonary fibrosis. Arch Biochem Biophys, 2021, 697: 108699.
|
28. |
Qi Y, Zhao A, Yang P, et al. miR-34a-5p attenuates EMT through targeting SMAD4 in silica-induced pulmonary fibrosis. J Cell Mol Med, 2020, 24(20): 12219-12224.
|
29. |
Yan W, Wu Q, Yao W, et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep, 2017, 7(1): 11313.
|
30. |
Takano M, Nekomoto C, Kawami M, et al. Role of miR-34a in TGF-β1- and Drug-Induced Epithelial-Mesenchymal transition in alveolar type II epithelial cells. J Pharm Sci, 2017, 106(9): 2868-2872.
|
31. |
Wu G, Xie B, Lu C, et al. microRNA-30a attenuates TGF-β1-induced activation of pulmonary fibroblast cell by targeting FAP-α. J Cell Mol Med, 2020, 24(6): 3745-3750.
|
32. |
Wei YQ, Yf G, Yang SM, et al. MiR-340-5p mitigates the proliferation and activation of fibroblast in lung fibrosis by targeting TGF-β/p38/ATF1 signaling pathway. Eur Rev Med Pharmacol Sci, 2020, 24(11): 6252-6261.
|
33. |
Yuan J, Li P, Pan H, et al. miR-542-5p attenuates fibroblast activation by targeting integrin α6 in Silica-Induced pulmonary fibrosis. Int J Mol Sci, 2018, 19(12): 3717.
|
34. |
Souma K, Shichino S, Hashimoto S, et al. Lung fibroblasts Express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis. Sci Rep, 2018, 8(1): 16642.
|
35. |
Zeng X, Huang C, Senavirathna L, et al. miR-27b inhibits fibroblast activation via targeting TGFβ signaling pathway. BMC Cell Biol, 2017, 18(1): 9.
|
36. |
Yao MY, Zhang WH, Ma WT, et al. microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med, 2019, 51(6): 1-16.
|
37. |
Su S, Zhao Q, He C, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun, 2015, 6: 8523.
|
38. |
Szanto A, Balint BL, Nagy ZS, et al. STAT6 transcription factor isa facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity, 2010, 33(5): 699-712.
|
39. |
Huang CQ, Yang Y, Liu L. Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Physiol Genomics, 2015, 47(10): 463-469.
|
40. |
Cao G, Zhang J, Wang M, et al. Differential expression of long non-coding RNAs in bleomycin-induced lung fibrosis. Int J Mol Med, 2013, 32(2): 355-364.
|
41. |
Sun H, Chen JJ, Qian WY, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med, 2016, 20(7): 1234-1246.
|
42. |
Liu Y, Li Y, Xu Q, et al. Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(2): 420-431.
|
43. |
Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY), 2020, 12(5): 4322-4336.
|
44. |
Yang W, Li X, Qi S, et al. lncRNA H19 is involved in TGF-β1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT signaling pathway. Peer J, 2017, 5: e3950.
|
45. |
Cai W, Xu H, Zhang B, et al. Differential expression of lncRNAs during silicosis and the role of LOC103691771 in myofibroblast differentiation induced by TGF-β1. Biomed Pharmacother, 2020, 125: 109980.
|
46. |
Xiao T, Zou Z, Xue J, et al. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. Environ Pollut, 2021, 268(Pt A): 115810.
|
47. |
Song X, Cao G, Jing L, et al. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med, 2014, 18(6): 991-1003.
|
48. |
Huang C, Liang Y, Zeng X, et al. Long noncoding RNA FENDRR exhibits antifibrotic activity in pulmonary fibrosis. Am J Respir Cell Mol Biol, 2020, 62(4): 440-453.
|
49. |
Gong L, Zhu L, Yang T. Fendrr involves in the pathogenesis of cardiac fibrosis via regulating miR-106b/SMAD3 axis. Biochem Biophys Res Commun, 2020, 524(1): 169-177.
|
50. |
Lu Q, Guo Z, Xie W, et al. The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflammation, 2018, 41(3): 896-903.
|
51. |
Wang X, Cheng Z, Dai L, et al. Knockdown of long noncoding RNA H19 represses the progress of pulmonary fibrosis through the transforming growth factor β/Smad3 pathway by regulating MicroRNA 140. Mol Cell Biol, 2019, 39(12): e00119-e00143.
|
52. |
Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science, 2013, 340(6131): 440-441.
|
53. |
Li R, Wang Y, Song X, et al. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med, 2018, 42(6): 3256-3268.
|
54. |
Li J, Li P, Zhang G, et al. CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts. Cell Death Dis, 2020, 11(7): 553.
|
55. |
Chang YS, Luo W, Li Z, et al. CircRNA-012091/PPP1R13B–mediated lung fibrotic response in silicosis via endoplasmic reticulum stress and autophagy. Am J Respir Cell Mol Biol, 2019, 61(3): 380-391.
|
56. |
Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis. Toxicol Sci, 2018, 166(2): 465-478.
|
57. |
Zhou ZW, Jiang R, Yang XY, et al. circRNA mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination. Theranostics, 2018, 8(2): 575-592.
|