1. |
Nieman LK. Recent updates on the diagnosis and management of Cushing’s syndrome. Endocrinol Metab (Seoul), 2018, 33(2): 139-146.
|
2. |
Valette C, Ofaiche J, Severino M, et al. Fatal outcome of Netherton syndrome due to excessive use of topical corticosteroids in an adult patient. Ann Dermatol Venereol, 2020, 147(1): 36-40.
|
3. |
Barbot M, Zilio M, Scaroni C. Cushing’s syndrome: overview of clinical presentation, diagnostic tools and complications. Best Pract Res Clin Endocrinol Metab, 2020, 34(2): 101380.
|
4. |
Biswas M, Gibby O, Ivanova-Stoilova T, et al. Cushing’s syndrome and chronic venous ulceration-a clinical challenge. Int Wound J, 2011, 8(1): 99-102.
|
5. |
Stratakis CA. Skin manifestations of Cushing’s syndrome. Rev Endocr Metab Disord, 2016, 17(3): 283-286.
|
6. |
Erden F, Borlu M, Simsek Y, et al. Differences in skin lesions of endogenous and exogenous Cushing’s patients. Postepy Dermatol Alergol, 2019, 36(3): 272-275.
|
7. |
Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity, 2019, 50(3): 552-565.
|
8. |
Pivonello R, Isidori AM, De Martino MC, et al. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol, 2016, 4(7): 611-629.
|
9. |
Tafelski S, Mohamed D, Shaqura M, et al. Identification of mineralocorticoid and glucocorticoid receptors on peripheral nociceptors: translation of experimental findings from animal to human biology. Brain Res, 2019, 1712: 180-187.
|
10. |
Serres M, Viac J, Schmitt D. Glucocorticoid receptor localization in human epidermal cells. Arch Dermatol Res, 1996, 288(3): 140-146.
|
11. |
Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther, 2002, 96(1): 23-43.
|
12. |
Colazo JM, Evans BC, Farinas AF, et al. Applied bioengineering in tissue reconstruction, replacement, and regeneration. Tissue Eng Part B Rev, 2019, 25(4): 259-290.
|
13. |
Lause M, Kamboj A, Fernandez Faith E. Dermatologic manifestations of endocrine disorders. Transl Pediatr, 2017, 6(4): 300-312.
|
14. |
Cordeiro RC, Moraes AM. Ulceration of striae distensae in a patient with systemic lupus erythematosus. J Eur Acad Dermatol Venereol, 2008, 22(3): 390-392.
|
15. |
Arem AJ, Kischer CW. Analysis of striae. Plast Reconstr Surg, 1980, 65(1): 22-29.
|
16. |
Chedid M, Hoyle JR, Csaky KG, et al. Glucocorticoids inhibit keratinocyte growth factor production in primary dermal fibroblasts. Endocrinology, 1996, 137(6): 2232-2237.
|
17. |
Meisler N, Shull S, Xie R, et al. Glucocorticoids coordinately regulate type I collagen pro alpha 1 promoter activity through both the glucocorticoid and transforming growth factor beta response elements: a novel mechanism of glucocorticoid regulation of eukaryotic genes. J Cell Biochem, 1995, 59(3): 376-388.
|
18. |
Caffarini M, Armeni T, Pellegrino P, et al. Cushing syndrome: the role of MSCs in wound healing, immunosuppression, comorbidities, and antioxidant imbalance. Front Cell Dev Biol, 2019, 7: 227.
|
19. |
Slominski AT, Zmijewski MA. Glucocorticoids inhibit wound healing: novel mechanism of action. J Invest Dermatol, 2017, 137(5): 1012-1014.
|
20. |
Bjelaković G, Beninati S, Pavlović D, et al. Glucocorticoids and oxidative stress. J Basic Clin Physiol Pharmacol, 2007, 18(2): 115-127.
|
21. |
Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J, 2017, 14(1): 89-96.
|
22. |
Jozic I, Sawaya AP, Pastar I, et al. Pharmacological and genetic inhibition of caveolin-1 promotes epithelialization and wound closure. Mol Ther, 2019, 27(11): 1992-2004.
|
23. |
Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol, 2006, 117(3): 522-543.
|
24. |
Lee B, Vouthounis C, Stojadinovic O, et al. From an enhanceosome to a repressosome: molecular antagonism between glucocorticoids and EGF leads to inhibition of wound healing. J Mol Biol, 2005, 345(5): 1083-1097.
|
25. |
Scaroni C, Zilio M, Foti M, et al. Glucose metabolism abnormalities in Cushing syndrome: from molecular basis to clinical management. Endocr Rev, 2017, 38(3): 189-219.
|
26. |
Friedman TC, Mastorakos G, Newman TD, et al. Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J, 1996, 43(6): 645-655.
|
27. |
Biering H, Knappe G, Gerl H, et al. Prevalence of diabetes in acromegaly and Cushing syndrome. Acta Med Austriaca, 2000, 27(1): 27-31.
|
28. |
Cadau S, Leoty-Okombi S, Pain S, et al. In vitro glycation of an endothelialized and innervated tissue-engineered skin to screen anti-AGE molecules. Biomaterials, 2015, 51: 216-225.
|
29. |
Chen YH, Chen ZW, Li HM, et al. AGE/RAGE-induced EMP release via the NOX-derived ROS pathway. J Diabetes Res, 2018, 2018: 6823058.
|
30. |
Lao G, Ren M, Wang X, et al. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect. Exp Dermatol, 2019, 28(5): 528-535.
|
31. |
Lan CC, Wu CS, Huang SM, et al. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br J Dermatol, 2012, 166(6): 1221-1229.
|
32. |
Deluyker D, Evens L, Bito V. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs. Amino Acids, 2017, 49(9): 1535-1541.
|
33. |
Evens L, Beliën H, Deluyker D, et al. The impact of advanced glycation end-products (AGEs) on proliferation and apoptosis of primary stem cells: a systematic review. Stem Cells Int, 2020, 2020: 8886612.
|
34. |
Li M, Zhao Y, Hao H, et al. Umbilical cord-derived mesenchymal stromal cell-conditioned medium exerts in vitro antiaging effects in human fibroblasts. Cytotherapy, 2017, 19(3): 371-383.
|
35. |
Senthil KK, Gokila VM, Mau JL, et al. A steroid like phytochemical antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget, 2016, 7(39): 62836-62861.
|
36. |
Salpea KD, Maubaret CG, Kathagen A, et al. The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts. PLoS One, 2013, 8(9): e73756.
|
37. |
李炳旻, 王芳芳, 李倩坤, 等. 糖尿病溃疡的发生机制与治疗进展. 解放军医学院学报, 2019, 40(10): 992-994.
|
38. |
Chang FJ, Yuan HY, Hu XX, et al. High density lipoprotein from patients with valvular heart disease uncouples endothelial nitric oxide synthase. J Mol Cell Cardiol, 2014, 74: 209-219.
|
39. |
Arnaldi G, Mancini T, Tirabassi G, et al. Advances in the epidemiology, pathogenesis, and management of Cushing’s syndrome complications. J Endocrinol Invest, 2012, 35(4): 434-448.
|
40. |
Kronfol Z, Starkman M, Schteingart DE, et al. Immune regulation in Cushing’s syndrome: relationship to hypothalamic-pituitary-adrenal axis hormones. Psychoneuroendocrinology, 1996, 21(7): 599-608.
|
41. |
Orange DE, Mehta B. Rethinking the balance of risks and rewards of chronic low-dose glucocorticoids in rheumatoid arthritis. Ann Intern Med, 2020, 173(11): 933-934.
|
42. |
Vestby LK, Grønseth T, Simm R, et al. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel), 2020, 9(2): 59.
|
43. |
Soni P, Koech H, Silva D, et al. Cerebral venous sinus thrombosis after transsphenoidal resection: a rare complication of Cushing disease-associated hypercoagulability. World Neurosurg, 2020, 134: 86-89.
|
44. |
Van Zaane B, Nur E, Squizzato A, et al. Hypercoagulable state in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab, 2009, 94(8): 2743-2750.
|
45. |
Erem C, Nuhoglu I, Yilmaz M, et al. Blood coagulation and fibrinolysis in patients with Cushing’s syndrome: increased plasminogen activator inhibitor-1, decreased tissue factor pathway inhibitor, and unchanged thrombin-activatable fibrinolysis inhibitor levels. J Endocrinol Invest, 2009, 32(2): 169-174.
|
46. |
Maubec E, Laouénan C, Deschamps L, et al. Topical mineralocorticoid receptor blockade limits glucocorticoid-induced epidermal atrophy in human skin. J Invest Dermatol, 2015, 135(7): 1781-1789.
|
47. |
Jozic I, Vukelic S, Stojadinovic O, et al. Stress signals, mediated by membranous glucocorticoid receptor, activate PLC/PKC/GSK-3β/β-catenin pathway to inhibit wound closure. J Invest Dermatol, 2017, 137(5): 1144-1154.
|
48. |
Vukelic S, Stojadinovic O, Pastar I, et al. Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J Biol Chem, 2011, 286(12): 10265-10275.
|
49. |
Terao M, Murota H, Kimura A, et al. 11β-hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair. PLoS One, 2011, 6(9): e25039.
|
50. |
Emmerich J, van Koppen CJ, Burkhart JL, et al. Accelerated skin wound healing by selective 11β-Hydroxylase (CYP11B1) inhibitors. Eur J Med Chem, 2018, 143: 591-597.
|