1. |
Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis, 2020, 20(9): e238-e244.
|
2. |
Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev, 2012, 76(1): 16-32.
|
3. |
李娜, 李维, 杨拴盈. 新型冠状病毒肺炎与细胞因子风暴. 国际呼吸杂志, 2020, 40(13): 1001-1004.
|
4. |
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest, 2020, 130(5): 2620-2629.
|
5. |
綦越, 张建梅, 蒋红英, 等. 新型冠状病毒肺炎基础、临床与康复治疗. 华西医学, 2021, 36(1): 19-23.
|
6. |
Weinlich R, Oberst A, Beere HM, et al. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol, 2017, 18(2): 127-136.
|
7. |
Minagawa S, Yoshida M, Araya J, et al. Regulated necrosis in pulmonary disease. A focus on necroptosis and ferroptosis. Am J Respir Cell Mol Biol, 2020, 62(5): 554-562.
|
8. |
Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009, 137(6): 1112-1123.
|
9. |
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 2017, 39(5): 529-539.
|
10. |
Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol, 2016, 13(1): 3-10.
|
11. |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.e8.
|
12. |
Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type Ⅱ cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol, 2013, 48(6): 742-748.
|
13. |
Wang J, Nikrad MP, Phang T, et al. Innate immune response to influenza A virus in differentiated human alveolar type Ⅱ cells. Am J Respir Cell Mol Biol, 2011, 45(3): 582-591.
|
14. |
Wu J, Wu X, Zeng W, et al. Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Invest Radiol, 2020, 55(5): 257-261.
|
15. |
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020, 5(4): 536-544.
|
16. |
Li S, Zhang Y, Guan Z, et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther, 2020, 5(1): 235.
|
17. |
Siempos II, Ma KC, Imamura M, et al. RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. JCI Insight, 2018, 3(9): e97102.
|
18. |
Nakamura H, Kinjo T, Arakaki W, et al. Serum levels of receptor-interacting protein kinase-3 in patients with COVID-19. Crit Care, 2020, 24(1): 484.
|
19. |
Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 2021, 184(1): 149-168.e17.
|
20. |
李思佳, 李文新. 程序性坏死参与特发性肺纤维化的研究进展. 医学研究生学报, 2020, 33(11): 1218-1222.
|
21. |
Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir Med, 2013, 1(5): 395-401.
|
22. |
Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med, 2011, 364(14): 1293-1304.
|
23. |
王珏, 王彬杰, 杨加彩, 等. 新型冠状病毒肺炎诱发肺纤维化的机制及相关治疗研究进展. 中华烧伤杂志, 2020, 36(8): 691-697.
|
24. |
Hou J, Ma T, Cao H, et al. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol, 2018, 233(3): 2409-2419.
|
25. |
Hams E, Armstrong ME, Barlow JL, et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A, 2014, 111(1): 367-372.
|
26. |
Lee JM, Yoshida M, Kim MS, et al. Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol, 2018, 59(2): 215-224.
|
27. |
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol, 2005, 1(2): 112-119.
|
28. |
Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol, 2008, 4(5): 313-321.
|
29. |
Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol, 2014, 35: 14-23.
|
30. |
Liu YR, Xu HM. Protective effect of necrostatin-1 on myocardial tissue in rats with acute myocardial infarction. Genet Mol Res, 2016, 15(2): gmr7298.
|
31. |
Liang S, Lv ZT, Zhang JM, et al. Necrostatin-1 attenuates trauma-induced mouse osteoarthritis and IL-1β induced apoptosis via HMGB1/TLR4/SDF-1 in primary mouse chondrocytes. Front Pharmacol, 2018, 9: 1378.
|
32. |
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Infect, 2020, 80(6): 607-613.
|
33. |
Ragab D, Salah Eldin H, Taeimah M, et al. The COVID-19 cytokine storm; what we know so far. Front Immunol, 2020, 11: 1446.
|
34. |
Liu Y, Chen D, Hou J, et al. An inter-correlated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine, 2021, 138: 155365.
|
35. |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497-506.
|
36. |
Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science, 2020, 368(6490): 473-474.
|
37. |
Deepa SS, Unnikrishnan A, Matyi S, et al. Necroptosis increases with age and is reduced by dietary restriction. Aging Cell, 2018, 17(4): e12770.
|
38. |
Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents, 2020, 34(2): 327-331.
|
39. |
Zelic M, Roderick JE, O’Donnell JA, et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Invest, 2018, 128(5): 2064-2075.
|
40. |
Duan PY, Ma Y, Li XN, et al. Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med, 2019, 51(8): 1-17.
|
41. |
Wang X, Jiang W, Yan Y, et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol, 2014, 15(12): 1126-1133.
|