1. |
Gether L, Overgaard LK, Egeberg A, et al. Incidence and prevalence of rosacea: a systematic review and meta-analysis. Br J Dermatol, 2018, 179(2): 282-289.
|
2. |
Ahn CS, Huang WW. Rosacea pathogenesis. Dermatol Clin, 2018, 36(2): 81-86.
|
3. |
Tan J, Blume-Peytavi U, Ortonne JP, et al. P. An observational cross-sectional survey of rosacea: clinical associations and progression between subtypes. Br J Dermatol, 2013, 169(3): 555-562.
|
4. |
Deng Y, Peng Q, Yang S, et al. The Rosacea-specific Quality-of-Life instrument (RosQol): revision and validation among Chinese patients. PLoS One, 2018, 13(2): e0192487.
|
5. |
Wilkin J, Dahl M, Detmar M, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. J Am Acad Dermatol, 2002, 46(4): 584-587.
|
6. |
Two AM, Wu W, Gallo RL, et al. Rosacea: partⅠ. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol, 2015, 72(5): 749-758.
|
7. |
Thompson KG, Rainer BM, Antonescu C, et al. Comparison of the skin microbiota in acne and rosacea. Exp Dermatol, 2020.
|
8. |
Rodrigues-Braz D, Zhao M, Yesilirmak N, et al. Cutaneous and ocular rosacea: common and specific physiopathogenic mechanisms and study models. Mol Vis, 2021, 27: 323-353.
|
9. |
Wei CY, Zhu MX, Lu NH, et al. Bioinformatics-based analysis reveals elevated MFSD12 as a key promoter of cell proliferation and a potential therapeutic target in melanoma. Oncogene, 2019, 38(11): 1876-1891.
|
10. |
刘萌, 段琪琪, 王敏, 等. 基于生物信息学分析探究银屑病关键基因和通路. 中国皮肤性病学杂志, 2019, 33(11): 1232-1238.
|
11. |
Buhl T, Sulk M, Nowak P, et al. Molecular and morphological characterization of inflammatory infiltrate in rosacea reveals activation of Th1/Th17 pathways. J Invest Dermatol, 2015, 135(9): 2198-2208.
|
12. |
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res, 2013, 41(Databaseissue): D991-D995.
|
13. |
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009, 4(1): 44-57.
|
14. |
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019, 47(D1): D607-D613.
|
15. |
Su G, Morris JH, Demchak B, et al. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics, 2014, 47: 8.13.1-8.13.24.
|
16. |
Li M, Li D, Tang Y, et al. CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. Int J Mol Sci, 2017, 18(9): 1880.
|
17. |
Chin CH, Chen SH, Wu HH, et al. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 2014, 8(Suppl 4): S11.
|
18. |
Mlecnik B, Galon J, Bindea G. Comprehensive functional analysis of large lists of genes and proteins. J Proteomics, 2018, 171(16): 2-10.
|
19. |
Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009, 37(1): 1-13.
|
20. |
Chen M, Xie H, Chen Z, et al. Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-κB activation in keratinocytes. Biomed Pharmacother, 2019, 116: 109011.
|
21. |
Harden JL, Shih YH, Xu J, et al. Paired transcriptomic and proteomic analysis implicates IL-1β in the pathogenesis of papulopustular rosacea explants. Invest Dermatol, 2021, 141(4): 800-809.
|
22. |
Barcellos LF, Caillier S, Dragone L, et al. PTPRC (CD45) is not associated with the development of multiple sclerosis in U.S. patients. Nat Genet, 2001, 29(1): 23-24.
|
23. |
Jacobsen M, Schweer D, Ziegler A, et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet, 2000, 26(4): 495-499.
|
24. |
Cui J, Saevarsdottir S, Thomson B, et al. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factorαtherapy. Arthritis Rheum, 2010, 62(7): 1849-1861.
|
25. |
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol, 2020, 318(3): C542-C554.
|
26. |
Yuan X, Li J, Li Yf, et al. Artemisinin, a potential option to inhibit inflammation and angiogenesis in rosacea. Biomed Pharmacother, 2019, 117: 109181.
|
27. |
Deng Z, Chen M, Liu Y, at al. A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea. EMBO Mol Med, 2021, 13(5): e13560.
|
28. |
Moura AKA, Guedes F, Rivitti-Machado MC, et al. Inate immunity in rosacea. Langerhans cells, plasmacytoid dentritic cells, Toll-like receptors and inducible oxide nitric synthase (iNOS) expression in skin specimens: case-control study. Arch Dermatol Res, 2018, 310(2): 139-146.
|
29. |
Deng Z, Liu F, Chen M, et al. Keratinocyte-immune cell crosstalk in a STAT1-mediated pathway: novel insights into rosacea pathogenesis. Front Immunol, 2021, 12: 674871.
|