1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020, 70(1): 7-30.
|
2. |
Angell HK, Bruni D, Barrett JC, et al. The immunoscore: colon cancer and beyond. Clin Cancer Res, 2020, 26(2): 332-339.
|
3. |
Hsu PC, Jablons DM, Yang CT, et al. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci, 2019, 20(15): 3821.
|
4. |
De Souza ALPB. Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Transl Gastroenterol Hepatol, 2020, 5: 48.
|
5. |
Shan T, Chen S, Wu T, et al. PD-L1 expression in colon cancer and its relationship with clinical prognosis. Int J Clin Exp Pathol, 2019, 12(5): 1764-1769.
|
6. |
Sun J, Zheng Y, Mamun M, et al. Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors. Biomed Pharmacother, 2020, 129: 110504.
|
7. |
Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655): 495-499.
|
8. |
Yang Y, Li L, Xu C, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut, 2020, 70(8): 1495-1506.
|
9. |
Jiang X, Cao G, Gao G, et al. Triptolide decreases tumor-associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor-derived CXCL12. J Cell Physiol, 2021, 236(1): 193-204.
|
10. |
Larionova I, Tuguzbaeva G, Ponomaryova A, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol, 2020, 10: 566511.
|
11. |
Molgora M, Esaulova E, Vermi W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell, 2020, 182(4): 886-900.e17.
|
12. |
Franzè E, Laudisi F, Di Grazia A, et al. Macrophages produce and functionally respond to interleukin-34 in colon cancer. Cell Death Discov, 2020, 6(1): 117.
|
13. |
DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol, 2019, 19(6): 369-382.
|
14. |
Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018, 174(5): 1293-1308.e36.
|
15. |
Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med, 2018, 24(8): 1277-1289.
|
16. |
Zhang L, Li Z, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell, 2020, 181(2): 442-459.e29.
|
17. |
Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol, 2017, 14(7): 399-416.
|
18. |
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng, 2018, 2(8): 578-588.
|
19. |
Ma J, Liu L, Che G, et al. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer, 2010, 10: 112.
|
20. |
Guo L, Wang C, Qiu X, et al Colorectal cancer immune infiltrates: significance in patient prognosis and immunotherapeutic efficacy. Front Immunol, 2020, 11: 1052.
|
21. |
Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol, 2020, 13(1): 156.
|
22. |
Lee CC, Lin JC, Hwang WL, et al. Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nat Commun, 2018, 9(1): 3763.
|
23. |
Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer, 2019, 18(1): 64.
|
24. |
Cooks T, Pateras IS, Jenkins LM, et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun, 2018, 9(1): 771.
|
25. |
Tagliamonte M, Petrizzo A, Tornesello ML, et al. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother, 2014, 10(11): 3332-3346.
|
26. |
Lin X, Wang S, Sun M, et al. miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. J Hematol Oncol, 2019, 12(1): 20.
|
27. |
Zhong Q, Fang Y, Lai Q, et al. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling. J Exp Clin Cancer Res, 2020, 39(1): 132.
|
28. |
Liu Q, Yang C, Wang S, et al. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal, 2020, 18(1): 51.
|
29. |
Malesci A, Bianchi P, Celesti G, et al. Tumor-associated macrophages and response to 5-fluorouracil adjuvant therapy in stage III colorectal cancer. Oncoimmunology, 2017, 6(12): e1342918.
|
30. |
Caux C, Ramos RN, Prendergast GC, et al. A milestone review on how macrophages affect tumor growth. Cancer Res, 2016, 76(22): 6439-6442.
|
31. |
Wang N, Wang S, Wang X, et al. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med, 2021, 11(1): e288.
|
32. |
Rubio CA, Schmidt PT. Severe defects in the macrophage barrier to gut microflora in inflammatory bowel disease and colon cancer. Anticancer Res, 2018, 38(7): 3811-3815.
|
33. |
Loke YL, Chew MT, Ngeow YF, et al. Colon carcinogenesis: the interplay between diet and gut microbiota. Front Cell Infect Microbiol, 2020, 10: 603086.
|
34. |
Fidelle M, Yonekura S, Picard M, et al. Resolving the paradox of colon cancer through the integration of genetics, immunology, and the microbiota. Front Immunol, 2020, 11: 600886.
|
35. |
Wan G, Xie M, Yu H, et al. Intestinal dysbacteriosis activates tumor-associated macrophages to promote epithelial-mesenchymal transition of colorectal cancer. Innate Immun, 2018, 24(8): 480-489.
|
36. |
Molska M, Reguła J. Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients, 2019, 11(10): 2453.
|
37. |
Mörkl S, Butler MI, Holl A, et al Probiotics and the microbiota-gut-brain axis: focus on psychiatry. Curr Nutr Rep, 2020, 9(3): 171-182.
|
38. |
Zhou W, Cheng Y, Zhu P, et al. Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev, 2020, 2020: 5394096.
|
39. |
Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A, 2014, 111(6): 2247-2252.
|
40. |
Bader J, Carson M, Enos R, et al. High-fat diet-fed ovariectomized mice are susceptible to accelerated subcutaneous tumor growth potentially through adipose tissue inflammation, local insulin-like growth factor release, and tumor associated macrophages. Oncotarget, 2020, 11(49): 4554-4569.
|
41. |
Ma J, Shayiti F, Ma J, et al. Tumor-associated macrophage-derived CCL5 promotes chemotherapy resistance and metastasis in prostatic cancer. Cell Biol Int, 2021, 45(10): 2054-2062.
|
42. |
Mo X, Huang X, Feng Y, et al. Immune infiltration and immune gene signature predict the response to fluoropyrimidine-based chemotherapy in colorectal cancer patients. Oncoimmunology, 2020, 9(1): 1832347.
|
43. |
Li J, Li L, Li Y, et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int J Colorectal Dis, 2020, 35(7): 1203-1210.
|
44. |
Yang Z, Zhang M, Peng R, et al. The prognostic and clinicopathological value of tumor-associated macrophages in patients with colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis, 2020, 35(9): 1651-1661.
|
45. |
Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab, 2019, 30(1): 36-50.
|
46. |
Rao G, Wang H, Li B, et al. Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clin Cancer Res, 2013, 19(4): 785-797.
|
47. |
Limagne E, Thibaudin M, Nuttin L, et al. Trifluridine/Tipiracil plus oxaliplatin improves PD-1 blockade in colorectal cancer by inducing immunogenic cell death and depleting macrophages. Cancer Immunol Res, 2019, 7(12): 1958-1969.
|
48. |
Huang YJ, Yang CK, Wei PL, et al. Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways. J Hematol Oncol, 2017, 10(1): 60.
|
49. |
Lee NY, Kim Y, Kim YS, et al. β-Carotene exerts anti-colon cancer effects by regulating M2 macrophages and activated fibroblasts. J Nutr Biochem, 2020, 82: 108402.
|