1. |
Mehta NM, Bechard LJ, Cahill N, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children-an international multicenter cohort study*. Crit Care Med, 2012, 40(7): 2204-2211.
|
2. |
Mehta NM, McAleer D, Hamilton S, et al. Challenges to optimal enteral nutrition in a multidisciplinary pediatric intensive care unit. JPEN J Parenter Enteral Nutr, 2010, 34(1): 38-45.
|
3. |
Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: society of critical care medicine and American society for parenteral and enteral nutrition. Pediatr Crit Care Med, 2017, 18(7): 675-715.
|
4. |
Fivez T, Kerklaan D, Mesotten D, et al. Evidence for the use of parenteral nutrition in the pediatric intensive care unit. Clin Nutr, 2017, 36(1): 218-223.
|
5. |
Joffe A, Anton N, Lequier L, et al. Nutritional support for critically ill children. Cochrane Database Syst Rev, 2016(5): CD005144.
|
6. |
危重症儿童营养评估及支持治疗指南 (2018, 中国) 工作组. 危重症儿童营养评估及支持治疗指南(2018, 中国, 标准版). 中国循证儿科杂志, 2018, 13(1): 1-29.
|
7. |
Jacobs A, Verlinden I, Vanhorebeek I, et al. Early supplemental parenteral nutrition in critically ill children: an update. J Clin Med, 2019, 8(6): 830.
|
8. |
Lee ZY, Heyland DK. Determination of nutrition risk and status in critically ill patients: what are our considerations?. Nutr Clin Pract, 2019, 34(1): 96-111.
|
9. |
Martindale R, Patel JJ, Taylor B, et al. Nutrition therapy in critically ill patients with coronavirus disease 2019. JPEN J Parenter Enteral Nutr, 2020, 44(7): 1174-1184.
|
10. |
Fuentes Padilla P, Martínez G, Vernooij RW, et al. Early enteral nutrition (within 48 hours) versus delayed enteral nutrition (after 48 hours) with or without supplemental parenteral nutrition in critically ill adults. Cochrane Database Syst Rev, 2019, 2019(10): CD012340.
|
11. |
Casaer MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med, 2011, 365(6): 506-517.
|
12. |
Jimenez L, Mehta NM, Duggan CP. Timing of the initiation of parenteral nutrition in critically ill children. Curr Opin Clin Nutr Metab Care, 2017, 20(3): 227-231.
|
13. |
Fivez T, Kerklaan D, Mesotten D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med, 2016, 374(12): 1111-1122.
|
14. |
Wang D, Lai X, Liu C, et al. Influence of supplemental parenteral nutrition approach on nosocomial infection in pediatric intensive care unit of emergency department: a retrospective study. Nutr J, 2015, 14: 103.
|
15. |
Goulet O, Jochum F, Koletzko B. Early or late parenteral nutrition in critically ill children: practical implications of the PEPaNIC trial. Ann Nutr Metab, 2017, 70(1): 34-38.
|
16. |
Groenendaal F. Early versus late parenteral nutrition in critically ill children. N Engl j med, 2016, 375(4): 384.
|
17. |
van Puffelen E, Vanhorebeek I, Joosten KFM, et al. Early versus late parenteral nutrition in critically ill, term neonates: a preplanned secondary subgroup analysis of the PEPaNIC multicentre, randomised controlled trial. Lancet Child Adolesc Health, 2018, 2(7): 505-515.
|
18. |
van Puffelen E, Polinder S, Vanhorebeek I, et al. Cost-effectiveness study of early versus late parenteral nutrition in critically ill children (PEPaNIC): preplanned secondary analysis of a multicentre randomised controlled trial. Critical care, 2018, 22(1): 4.
|
19. |
Ioannidis JPA. The challenge of reforming nutritional epidemiologic research. JAMA, 2018, 320(10): 969-970.
|
20. |
Kerklaan D, Fivez T, Mehta NM, et al. Worldwide Survey of Nutritional Practices in PICUs. Pediatr Crit Care Med, 2016, 17(1): 10-18.
|
21. |
Mehta NM, Bechard LJ, Zurakowski D, et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr, 2015, 102(1): 199-206.
|
22. |
Vanhorebeek I, Verbruggen S, Casaer MP, et al. Effect of early supplemental parenteral nutrition in the paediatric ICU: a preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir Med, 2017, 5(6): 475-483.
|
23. |
Fan E, Dowdy DW, Colantuoni E, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med, 2014, 42(4): 849-859.
|
24. |
Preiser JC. High protein intake during the early phase of critical illness: yes or no?. Crit Care, 2018, 22(1): 261.
|
25. |
Hermans G, Casaer MP, Clerckx B, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med, 2013, 1(8): 621-629.
|
26. |
Coss-Bu JA, Hamilton-Reeves J, Patel JJ, et al. Protein requirements of the critically ill pediatric patient. Nutr Clin Pract, 2017, 32(Suppl 1): 128S-141S.
|
27. |
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 2013, 13(10): 722-737.
|
28. |
Meijer AJ. Amino acid regulation of autophagosome formation. Methods Mol Biol, 2008, 445: 89-109.
|
29. |
Van Dyck L, Casaer MP, Gunst J. Autophagy and its implications against early full nutrition support in critical illness. Nutr Clin Pract, 2018, 33(3): 339-347.
|
30. |
van Goudoever JB, Carnielli V, Darmaun D, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: amino acids. Clin Nutr, 2018, 37(6 Pt B): 2315-2323.
|
31. |
Rennie MJ, Bohé J, Wolfe RR. Latency, duration and dose response relationships of amino acid effects on human muscle protein synthesis. J Nutr, 2002, 132(10): 3225S-3227S.
|
32. |
Gunst J, Vanhorebeek I, Casaer MP, et al. Impact of early parenteral nutrition on metabolism and kidney injury. J Am Soc Nephrol, 2013, 24(6): 995-1005.
|
33. |
Verstraete S, Van den Berghe G, Vanhorebeek I. What’s new in the long-term neurodevelopmental outcome of critically ill children. Intensive Care Med, 2018, 44(5): 649-651.
|
34. |
Verlinden I, Dulfer K, Vanhorebeek I, et al. Role of age of critically ill children at time of exposure to early or late parenteral nutrition in determining the impact hereof on long-term neurocognitive development: a secondary analysis of the PEPaNIC-RCT. Clin Nutr, 2021, 40(3): 1005-1012.
|
35. |
Ancel PY, Goffinet F, EPIPAGE-2 Writing Group, et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr, 2015, 169(3): 230-238.
|
36. |
Darmaun D, Lapillonne A, Simeoni U, et al. Parenteral nutrition for preterm infants: issues and strategy. Arch Pediatr, 2018, 25(4): 286-294.
|
37. |
Senterre T, Rigo J. L’alimentation parentérale du prématuré: comment la prescrire pour optimiser la croissance et le développement [Parenteral nutrition in premature infants: practical aspects to optimize postnatal growth and development]. Arch Pediatr, 2013, 20(9): 986-993.
|
38. |
Rigo J, Senterre T. Intrauterine-like growth rates can be achieved with premixed parenteral nutrition solution in preterm infants. J Nutr, 2013, 143(12 Suppl): 2066S-2070S.
|
39. |
Loÿs CM, Maucort-Boulch D, Guy B, et al. Extremely low birthweight infants: how neonatal intensive care unit teams can reduce postnatal malnutrition and prevent growth retardation. Acta Paediatr, 2013, 102(3): 242-248.
|
40. |
Lapointe M, Barrington KJ, Savaria M, et al. Preventing postnatal growth restriction in infants with birthweight less than 1300 g. Acta Paediatr, 2016, 105(2): e54-e59.
|
41. |
Denne SC, Poindexter BB. Evidence supporting early nutritional support with parenteral amino acid infusion. Semin Perinatol, 2007, 31(2): 56-60.
|
42. |
Wharton BA, Morley R, Isaacs EB, et al. Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed, 2004, 89(6): F497-F498.
|
43. |
van den Akker CH, Schierbeek H, Minderman G, et al. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics. Pediatr Res, 2011, 70(6): 566-571.
|
44. |
Morgan C, McGowan P, Herwitker S, et al. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics, 2014, 133(1): e120-e128.
|