1. |
Buckley R, Tough S, McCormack R, et al. Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am, 2002, 84(10): 1733-1744.
|
2. |
Pneumaticos SG, Triantafyllopoulos GK, Giannoudis PV. Advances made in the treatment of thoracolumbar fractures: current trends and future directions. Injury, 2013, 44(6): 703-712.
|
3. |
Vaccaro AR, Lehman RA, Hurlbert RJ, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976), 2005, 30(20): 2325-2333.
|
4. |
Park CJ, Kim SK, Lee TM, et al. Clinical relevance and validity of TLICS system for thoracolumbar spine injury. Sci Rep, 2020, 10(1): 19494.
|
5. |
Tian W, Liu Y, Zheng S, et al. Accuracy of lower cervical pedicle screw placement with assistance of distinct navigation systems: a human cadaveric study. Eur Spine J, 2013, 22(1): 148-155.
|
6. |
俞阳, 胡豇, 唐六一, 等. 机器人辅助手术治疗胸腰椎骨折. 脊柱外科杂志, 2020, 18(4): 222-226.
|
7. |
李亭, 刘希麟, 王飞, 等. 机器人辅助微创经椎间孔腰椎椎间融合治疗腰椎退行性疾病: 置钉精度及其安全性. 中国组织工程研究, 2022, 26(36): 5812-5818.
|
8. |
Bruno AG, Burkhart K, Allaire B, et al. Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. J Bone Miner Res, 2017, 32(6): 1282-1290.
|
9. |
Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976), 1983, 8(8): 817-831.
|
10. |
Joaquim AF, de Almeida Bastos DC, Jorge Torres HH, et al. Thoracolumbar injury classification and injury severity score system: a literature review of its safety. Global Spine J, 2016, 6(1): 80-85.
|
11. |
Savage JW, Moore TA, Arnold PM, et al. The reliability and validity of the thoracolumbar injury classification system in pediatric spine trauma. Spine (Phila Pa 1976), 2015, 40(18): E1014-E1018.
|
12. |
Ruiz Santiago F, Tomás Muñoz P, Moya Sánchez E, et al. Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg, 2016, 6(6): 772-784.
|
13. |
Joaquim AF, Fernandes YB, Cavalcante RA, et al. Evaluation of the thoracolumbar injury classification system in thoracic and lumbar spinal trauma. Spine (Phila Pa 1976), 2011, 36(1): 33-36.
|
14. |
Joaquim AF, Patel A. Relationships between the Arbeitsgemeinschaft für Osteosynthesefragen Spine System and the Thoracolumbar Injury Classification System: an analysis of the literature. J Spinal Cord Med, 2013, 36(6): 586-590.
|
15. |
Moore TA, Bransford RJ, France JC, et al. Low lumbar fractures does thoracolumbar injury classification and severity score work?. Spine (Phila Pa 1976), 2014, 39(17): E1021-E1025.
|
16. |
Pneumaticos SG, Karampinas PK, Triantafilopoulos G, et al. Evaluation of TLICS for thoracolumbar fractures. Eur Spine J, 2016, 25(4): 1123-1127.
|
17. |
Nataraj A, Jack AS, Ihsanullah I, et al. Outcomes in thoracolumbar burst fractures with a thoracolumbar injury classification score (TLICS) of 4 treated with surgery versus initial conservative management. Clin Spine Surg, 2018, 31(6): E317-E321.
|
18. |
Mohamadi A, Googanian A, Ahmadi A, et al. Comparison of surgical or nonsurgical treatment outcomes in patients with thoracolumbar fracture with Score 4 of TLICS: a randomized, single-blind, and single-central clinical trial. Medicine (Baltimore), 2018, 97(6): e9842.
|
19. |
van der Roer N, de Lange ES, Bakker FC, et al. Management of traumatic thoracolumbar fractures: a systematic review of the literature. Eur Spine J, 2005, 14(6): 527-534.
|
20. |
Thomas KC, Bailey CS, Dvorak MF, et al. Comparison of operative and nonoperative treatment for thoracolumbar burst fractures in patients without neurological deficit: a systematic review. J Neurosurg Spine, 2006, 4(5): 351-358.
|
21. |
王经宇, 董玉珍, 安永博, 等. HXN 型微创椎弓根螺钉系统经伤椎固定治疗胸腰椎骨折. 中国组织工程研究, 2017, 21(35): 5616-5621.
|
22. |
Smith CJ, Abdulazeez MM, ElGawady M, et al. The effect of thoracolumbar injury classification in the clinical outcome of operative and non-operative treatments. Cureus, 2021, 13(1): e12428.
|
23. |
Alan N, Donohue J, Ozpinar A, et al. Load-sharing classification score as supplemental grading system in the decision-making process for patients with thoracolumbar injury classification and severity 4. Neurosurgery, 2021, 89(3): 428-434.
|
24. |
Kim HJ, Jung WI, Chang BS, et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot, 2017, 13(3): e1779.
|
25. |
Peng YN, Tsai LC, Hsu HC, et al. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med, 2020, 8(13): 824.
|
26. |
Tarawneh AM, Salem KM. A systematic review and meta-analysis of randomized controlled trials comparing the accuracy and clinical outcome of pedicle screw placement using robot-assisted technology and conventional freehand technique. Global Spine J, 2021, 11(4): 575-586.
|
27. |
Zhou LP, Zhang RJ, Li HM, et al. Comparison of cranial facet joint violation rate and four other clinical indexes between robot-assisted and freehand pedicle screw placement in spine surgery: a meta-analysis. Spine (Phila Pa 1976), 2020, 45(22): E1532-E1540.
|
28. |
王飞, 胡豇, 唐六一, 等. 机器人辅助与传统徒手植钉在上胸椎椎弓根螺钉内固定中的比较研究. 中国修复重建外科杂志, 2020, 34(12): 1521-1525.
|
29. |
陈卓, 赵俊强, 付俊伟, 等. 微创椎弓根钉内固定治疗胸腰椎创伤性骨折. 中华医学杂志, 2010, 90(21): 1491-1493.
|
30. |
Cimatti M, Forcato S, Polli F, et al. Pure percutaneous pedicle screw fixation without arthrodesis of 32 thoraco-lumbar fractures: clinical and radiological outcome with 36-month follow-up. Eur Spine J, 2013, 22(Suppl 6): S925-S932.
|