1. |
Zobell CE, Allen EC. Attachment of marine bacteria to submerged slides. Proc Soc Exp Biol Med, 1933, 30(9): 1409-1411.
|
2. |
Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am, 1978, 238(1): 86-95.
|
3. |
Bjarnsholt T, Buhlin K, Dufrêne YF, et al. Biofilm formation - what we can learn from recent developments. J Intern Med, 2018, 284(4): 332-345.
|
4. |
Yin W, Wang Y, Liu L, et al. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci, 2019, 20(14): 3423.
|
5. |
Center for Disease Dynamics, Economics & Policy. The state of the world’s antibiotics 2015. Washington, D.C.: CDDEP, 2015.
|
6. |
Carvalho FM, Teixeira-Santos R, Mergulhão FJM, et al. The use of probiotics to fight biofilms in medical devices: a systematic review and meta-analysis. Microorganisms, 2020, 9(1): 27.
|
7. |
Sánchez B, Delgado S, Blanco-Míguez A, et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res, 2017, 61(1): 1600240.
|
8. |
Wasfi R, Abd El-Rahman OA, Zafer MM, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med, 2018, 22(3): 1972-1983.
|
9. |
James KM, MacDonald KW, Chanyi RM, et al. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. J Med Microbiol, 2016, 65(4): 328-336.
|
10. |
Tan Y, Leonhard M, Moser D, et al. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch Oral Biol, 2018, 85: 40-45.
|
11. |
Ramos AN, Cabral ME, Noseda D, et al. Antipathogenic properties of Lactobacillus plantarum on Pseudomonas aeruginosa: the potential use of its supernatants in the treatment of infected chronic wounds. Wound Repair Regen, 2012, 20(4): 552-562.
|
12. |
Varma P, Nisha N, Dinesh KR, et al. Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. J Mol Microbiol Biotechnol, 2011, 20(3): 137-143.
|
13. |
Kaur S, Sharma P, Kalia N, et al. Anti-biofilm properties of the fecal probiotic lactobacilli against Vibrio spp. Front Cell Infect Microbiol, 2018, 8: 120.
|
14. |
Lau CS, Chamberlain RS. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med, 2016, 9: 27-37.
|
15. |
Gómez NC, Ramiro JM, Quecan BX, et al. Use of potential probiotic lactic acid bacteria (lab) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157: H7 biofilms formation. Front Microbiol, 2016, 7: 863.
|
16. |
Chen Q, Zhu Z, Wang J, et al. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization. Acta Biomater, 2017, 50: 353-360.
|
17. |
Berríos P, Fuentes JA, Salas D, et al. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Benef Microbes, 2018, 9(2): 257-268.
|
18. |
Tan L, Fu J, Feng F, et al. Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci Adv, 2020, 6(46): eaba5723.
|
19. |
Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol, 2019, 17(6): 371-382.
|
20. |
Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des, 2015, 21(1): 5-11.
|
21. |
García-Contreras R, Nuñez-López L, Jasso-Chávez R, et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J, 2015, 9(1): 115-125.
|
22. |
Bandyopadhyay D, Prashar D, Luk YY. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface. Langmuir, 2011, 27(10): 6124-6131.
|
23. |
Styles MJ, Boursier ME, McEwan MA, et al. Autoinducer-fluorophore conjugates enable FRET in LuxR proteins in vitro and in cells. Nat Chem Biol, 2022, 18(10): 1115-1124.
|
24. |
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389-395.
|
25. |
Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol, 2012, 132(3 Pt 2): 887-895.
|
26. |
Sierra JM, Fusté E, Rabanal F, et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther, 2017, 17(6): 663-676.
|
27. |
Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect, 2017, 50(4): 405-410.
|
28. |
Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol, 2009, 30(3): 131-141.
|
29. |
Zhou Y, Peng Y. Synergistic effect of clinically used antibiotics and peptide antibiotics against Gram-positive and Gram-negative bacteria. Exp Ther Med, 2013, 6(4): 1000-1004.
|
30. |
Bhattacharjya S, Ramamoorthy A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J, 2009, 276(22): 6465-6473.
|
31. |
Rudilla H, Fusté E, Cajal Y, et al. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules, 2016, 21(9): 1223.
|
32. |
Pletzer D, Hancock RE. Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol, 2016, 198(19): 2572-2578.
|
33. |
Rios AC, Moutinho CG, Pinto FC, et al. Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res, 2016, 191: 51-80.
|
34. |
Eckert R, Qi F, Yarbrough DK, et al. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother, 2006, 50(4): 1480-1488.
|
35. |
Bowdish DM, Davidson DJ, Hancock RE. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci, 2005, 6(1): 35-51.
|
36. |
Cisek AA, Dąbrowska I, Gregorczyk KP, et al. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol, 2017, 74(2): 277-283.
|
37. |
Kutter EM, Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in western medicine. Future Microbiol, 2015, 10(5): 685-688.
|
38. |
Morris J, Kelly N, Elliott L, et al. Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. Surg Infect (Larchmt), 2019, 20(1): 16-24.
|
39. |
Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses, 2013, 5(3): 806-823.
|
40. |
McVay CS, Velásquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother, 2007, 51(6): 1934-1938.
|
41. |
Carmody LA, Gill JJ, Summer EJ, et al. Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis, 2010, 201(2): 264-271.
|
42. |
Debarbieux L, Leduc D, Maura D, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis, 2010, 201(7): 1096-1104.
|
43. |
Fu W, Forster T, Mayer O, et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother, 2010, 54(1): 397-404.
|
44. |
Hughes G, Webber MA. Novel approaches to the treatment of bacterial biofilm infections. Br J Pharmacol, 2017, 174(14): 2237-2246.
|
45. |
Halstead FD, Rauf M, Moiemen NS, et al. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS One, 2015, 10(9): e0136190.
|
46. |
Nagoba BS, Selkar SP, Wadher BJ, et al. Acetic acid treatment of pseudomonal wound infections--a review. J Infect Public Health, 2013, 6(6): 410-415.
|
47. |
Bjarnsholt T, Alhede M, Jensen PØ, et al. Antibiofilm properties of acetic acid. Adv Wound Care (New Rochelle), 2015, 4(7): 363-372.
|
48. |
Sloss JM, Cumberland N, Milner SM. Acetic acid used for the elimination of Pseudomonas aeruginosa from burn and soft tissue wounds. J R Army Med Corps, 1993, 139(2): 49-51.
|
49. |
Percival SL, Suleman L, Francolini I, et al. The effectiveness of photodynamic therapy on planktonic cells and biofilms and its role in wound healing. Future Microbiol, 2014, 9(9): 1083-1094.
|
50. |
Huang L, Wang M, Dai T, et al. Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70]fullerene: in vitro and in vivo studies. Nanomedicine (Lond), 2014, 9(2): 253-266.
|
51. |
Rosa LP, da Silva FC, Nader SA, et al. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: An in vitro study. Arch Oral Biol, 2015, 60(5): 675-680.
|
52. |
Mai B, Wang X, Liu Q, et al. The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med, 2016, 48(4): 400-408.
|
53. |
Zhang QZ, Zhao KQ, Wu Y, et al. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS One, 2017, 12(3): e0174627.
|
54. |
Bak J, Ladefoged SD, Tvede M, et al. Dose requirements for UVC disinfection of catheter biofilms. Biofouling, 2009, 25(4): 289-296.
|
55. |
Dai T, Kharkwal GB, Zhao J, et al. Ultraviolet-C light for treatment of Candida albicans burn infection in mice. Photochem Photobiol, 2011, 87(2): 342-349.
|
56. |
Dai T, Garcia B, Murray CK, et al. UVC light prophylaxis for cutaneous wound infections in mice. Antimicrob Agents Chemother, 2012, 56(7): 3841-3848.
|
57. |
Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol, 2019, 309(1): 1-12.
|
58. |
Shepherd J. Best served small: nano battles in the war against wound biofilm infections. Emerg Top Life Sci, 2020, 4(6): 567-580.
|
59. |
Mauro N, Fiorica C, Giuffrè M, et al. A self-sterilizing fluorescent nanocomposite as versatile material with broad-spectrum antibiofilm features. Mater Sci Eng C Mater Biol Appl, 2020, 117: 111308.
|
60. |
Brachner A, Fragouli D, Duarte IF, et al. Assessment of human health risks posed by nano-and microplastics is currently not feasible. Int J Environ Res Public Health, 2020, 17(23): 8832.
|
61. |
Lorenzetti M, Dogša I, Stošicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces, 2015, 7(3): 1644-1651.
|
62. |
Khalid S, Gao A, Wang G, et al. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci, 2020, 8(24): 6840-6857.
|