1. |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100): 1211-1259.
|
2. |
Hashimoto K, Aizawa T, Kanno H, et al. Adjacent segment degeneration after fusion spinal surgerya systematic review. Int Orthop, 2019, 43(4): 987-993.
|
3. |
Sharifi S, Bulstra SK, Grijpma DW, et al. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J Tissue Eng Regen Med, 2015, 9(10): 1120-1132.
|
4. |
Gebhard H, Bowles R, Dyke J, et al. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results. Evid Based Spine Care J, 2010, 1(2): 62-66.
|
5. |
魏晨旭, 何怡文, 王聃, 等. 组织工程学中骨修复材料的研究热点与进展. 2020, 24 (10): 1615-1621.
|
6. |
Schutgens EM, Tryfonidou MA, Smit TH, et al. Biomaterials for intervertebral disc regeneration: past performance and possible future strategies. Eur Cell Mater, 2015, 30: 210-231.
|
7. |
Wang Z, Wang Y, Yan J, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev, 2021, 174: 504-534.
|
8. |
Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers. Prog Polym Sci, 2013, 38(6): 963-991.
|
9. |
Brown TD, Daltona PD, Hutmacher DW. Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci, 2016, 56: 116-166.
|
10. |
Sobreiro-Almeida R, Fonseca DR, Neves NM. Extracellular matrix electrospun membranes for mimicking natural renal filtration barriers. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109866.
|
11. |
Unal S, Arslan S, Yilmaz BK, et al. Polycaprolactone/gelatin/hyaluronic acid electrospun scaffolds to mimic glioblastoma extracellular matrix. Materials (Basel), 2020, 13(11): 2661.
|
12. |
Yilmaz EN, Zeugolis DI. Electrospun polymers in cartilage engineering-state of play. Front Bioeng Biotechnol, 2020, 8: 77.
|
13. |
Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1): 261-272.
|
14. |
Lu CH, Chang YH, Lin SY, et al. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv, 2013, 31(8): 1695-1706.
|
15. |
Nerurkar NL, Baker BM, Sen S, et al. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat Mater, 2009, 8(12): 986-992.
|
16. |
Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release, 2012, 158(1): 15-33.
|
17. |
Sinha VR, Bansal K, Kaushik R, et al. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm, 2004, 278(1): 1-23.
|
18. |
Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res, 2007, 25(8): 1018-1028.
|
19. |
Martin JT, Milby AH, Chiaro JA, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model. Acta Biomater, 2014, 10(6): 2473-2481.
|
20. |
Kurusu RS, Demarquette NR. Surface modification to control the water wettability of electrospun mats. Int Mater Rev, 2019, 64(5): 249-287.
|
21. |
Kang R, Svend Le DQ, Li H, et al. Engineered three-dimensional nanofibrous multi-lamellar structure for annulus fibrosus repair. J Mater Chem B, 2013, 1(40): 5462-5468.
|
22. |
Santerre JP, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials, 2005, 26(35): 7457-7470.
|
23. |
Wang YF, Levene HB, Gu W, et al. Enhancement of energy production of the intervertebral disc by the implantation of polyurethane mass transfer devices. Ann Biomed Eng, 2017, 45(9): 2098-2108.
|
24. |
Yeganegi M, Kandel RA, Santerre JP. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: mechanical properties and cytotoxicity. Acta Biomater, 2010, 6(10): 3847-3855.
|
25. |
Yang L, Kandel RA, Chang G, et al. Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation. J Biomed Mater Res A, 2009, 91(4): 1089-1099.
|
26. |
Li Z, Lang G, Chen X, et al. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials, 2016, 84: 196-209.
|
27. |
Wismer N, Grad S, Fortunato G, et al. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng Part A, 2014, 20(3/4): 672-682.
|
28. |
Li L, Song K, Chen Y, et al. Design and biophysical characterization of poly (l-lactic) acid microcarriers with and without modification of chitosan and nanohydroxyapatite. Polymers (Basel), 2018, 10(10): 1061.
|
29. |
Zhao Y, Liu B, Bi H, et al. The degradation properties of MgO whiskers/PLLA composite in vitro. Int J Mol Sci, 2018, 19(9): 2740.
|
30. |
Vadalà G, Mozetic P, Rainer A, et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. Eur Spine J, 2012, 21 (Suppl 1): S20-S26.
|
31. |
Zhou P, Wei B, Guan J, et al. Mechanical stimulation and diameter of fiber scaffolds affect the differentiation of rabbit annulus fibrous stem cells. Tissue Eng Regen Med, 2021, 18(1): 49-60.
|
32. |
Liu C, Zhu C, Li J, et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res, 2015, 3: 15012.
|
33. |
Chu G, Zhang W, Zhou P, et al. Substrate topography regulates differentiation of annulus fibrosus-derived stem cells via CAV1-YAP-mediated mechanotransduction. ACS Biomater Sci Eng, 2021, 7(3): 862-871.
|
34. |
Shamsah AH, Cartmell SH, Richardson SM, et al. Mimicking the annulus fibrosus using electrospun polyester blended scaffolds. Nanomaterials (Basel), 2019, 9(4): 537.
|
35. |
Shamsah AH, Cartmell SH, Richardson SM, et al. Tissue engineering the annulus fibrosus using 3D rings of electrospun PCL: PLLA angle-ply nanofiber sheets. Front Bioeng Biotechnol, 2020, 7: 437.
|
36. |
Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech, 2010, 43(6): 1017-1030.
|
37. |
Chong JE, Santerre JP, Kandel RA. Generation of an in vitro model of the outer annulus fibrosus-cartilage interface. JOR Spine, 2020, 3(2): e1089.
|
38. |
Khorshidi S, Solouk A, Mirzadeh H, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med, 2016, 10(9): 715-738.
|
39. |
Sampson SL, Saraiva L, Gustafsson K, et al. Cell Electrospinning: an in vitro and in vivo study. Small, 2014, 10(1): 78-82.
|
40. |
Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364-3369.
|
41. |
Yeo M, Kim G. Fabrication of cell-laden electrospun hybrid scaffolds of alginate-based bioink and PCL microstructures for tissue regeneration. Chemical Eng J, 2015, 275: 27-35.
|
42. |
Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules, 2006, 7(1): 208-214.
|
43. |
Dong Z, Wu Y, Wang Q, et al. Reinforcement of electrospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds. J Biomed Mater Res A, 2012, 100A(4): 903-910.
|
44. |
Barber JG, Handorf AM, Allee TJ, et al. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng Part A, 2013, 19(11/12): 1265-1274.
|
45. |
Ma J, He Y, Liu X, et al. A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Int J Nanomedicine, 2018, 13: 1553-1567.
|
46. |
Iu J, Santerre JP, Kandel RA. Inner and outer annulus fibrosus cells exhibit differentiated phenotypes and yield changes in extracellular matrix protein composition in vitro on a polycarbonate urethane scaffold. Tissue Eng Part A, 2014, 20(23/24): 3261-3269.
|
47. |
Iu J, Santerre JP, Kandel RA. Towards engineering distinct multi-lamellated outer and inner annulus fibrosus tissues. J Orthop Res, 2018, 36(5): 1346-1355.
|
48. |
邓享誉, 梁航, 陈胜, 等. 椎间盘脱细胞基质材料用于椎间盘再生研究进展. 国际骨科学杂志, 2017, 38(3): 179-182.
|
49. |
Liu C, Xiao L, Zhang Y, et al. Regeneration of annulus fibrosus tissue using a DAFM/PECUU-blended electrospun scaffold. J Biomater Sci Polym Ed, 2020, 31(18): 2347-2361.
|
50. |
Park JS, Kim JM, Lee SJ, et al. Surface hydrolysis of fibrous poly(epsilon-caprolactone) scaffolds for enhanced osteoblast adhesion and proliferation. Macromol Res, 2007, 15(5): 424-429.
|
51. |
Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A, 2008, 14(9): 1527-1537.
|
52. |
Nerurkar NL, Sen S, Huang AH, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine (Phila Pa 1976), 2010, 35(8): 867-873.
|
53. |
Lazebnik M, Singh M, Glatt P, et al. Biomimetic method for combining the nucleus pulposus and annulus fibrosus for intervertebral disc tissue engineering. J Tissue Eng Regen Med, 2011, 5(8): e179-e187.
|
54. |
Do AV, Akkouch A, Green B, et al. Controlled and sequential delivery of fluorophores from 3D printed alginate-plga tubes. Ann Biomed Eng, 2017, 45(1): 297-305.
|
55. |
Lee SH, Kim BS, Kim SH, et al. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A, 2003, 66(1): 29-37.
|
56. |
Tian H, Tang Z, Zhuang X, et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci, 2012, 37(2): 237-280.
|
57. |
Yang J, Yang X, Wang L, et al. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale, 2017, 9(35): 13095-13103.
|