Antimicrobial stewardship (AMS) is an important means to control bacterial resistance. The unique situation of intensive care unit (ICU) poses a challenge to AMS. This article reviews the literature on AMS in the ICU at home and abroad in recent years, and summarizes the related measures of AMS. Effective AMS measures in the ICU include setting up a multidisciplinary AMS team, using rapid microbial diagnosis technology to shorten the time of diagnosis, using non-culture methods to assess the necessity of antimicrobial therapy for patients with suspected sepsis, and evaluating the effectiveness of antimicrobial therapy as early as possible and optimizing it. These initiatives aim to increase the rational use of antimicrobials in ICU, reduce the risk of multidrug-resistant infections, and improve patients’ condition.
Citation: GE Maojun. Progress in antimicrobial stewardship in intensive care units. West China Medical Journal, 2022, 37(3): 330-338. doi: 10.7507/1002-0179.202202053 Copy
1. | Versporten A, Zarb P, Caniaux I, et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health, 2018, 6(6): e619-e629. |
2. | Bassetti M, De Waele JJ, Eggimann P, et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med, 2015, 41(5): 776-795. |
3. | Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 2017, 43(3): 304-377. |
4. | Bergmans DC, Bonten MJ, Gaillard CA, et al. Indications for antibiotic use in ICU patients: a one-year prospective surveillance. J Antimicrob Chemother, 1997, 39(4): 527-535. |
5. | McGowan JE Jr, Gerding DN. Does antibiotic restriction prevent resistance?. New Horiz, 1996, 4(3): 370-376. |
6. | Chiotos K, Tamma PD, Gerber JS. Antibiotic stewardship in the intensive care unit: challenges and opportunities. Infect Control Hosp Epidemiol, 2019, 40(6): 693-698. |
7. | Dyar OJ, Huttner B, Schouten J, et al. What is antimicrobial stewardship?. Clin Microbiol Infect, 2017, 23(11): 793-798. |
8. | Shlaes DM, Gerding DN, John JF Jr, et al. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the prevention of antimicrobial resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis, 1997, 25(3): 584-599. |
9. | Gould IM. Stewardship of antibiotic use and resistance surveillance: the international scene. J Hosp Infect, 1999(Suppl 43): S253-S260. |
10. | Dellit TH, Owens RC, McGowan JE Jr, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis, 2007, 44(2): 159-177. |
11. | Society for Healthcare Epidemiology of America, Infectious Diseases Society of America, Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect Control Hosp Epidemiol, 2012, 33(4): 322-327. |
12. | Timsit JF, Bassetti M, Cremer O, et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med, 2019, 45(2): 172-189. |
13. | Tamma PD, Miller MA, Cosgrove SE. Rethinking how antibiotics are prescribed: incorporating the 4 moments of antibiotic decision making into clinical practice. JAMA, 2019, 321(2): 139-140. |
14. | Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis, 2016, 62(10): e51-e77. |
15. | Ntagiopoulos PG, Paramythiotou E, Antoniadou A, et al. Impact of an antibiotic restriction policy on the antibiotic resistance patterns of gram-negative microorganisms in an intensive care unit in Greece. Int J Antimicrob Agents, 2007, 30(4): 360-365. |
16. | Brahmi N, Blel Y, Kouraichi N, et al. Impact of antibiotic use and prescribing policy in a Tunisian intensive care unit. Med Mal Infect, 2006, 36(9): 460-465. |
17. | Peto Z, Benko R, Matuz M, et al. Results of a local antibiotic management program on antibiotic use in a tertiary intensive care unit in Hungary. Infection, 2008, 36(6): 560-564. |
18. | Niwa T, Shinoda Y, Suzuki A, et al. Outcome measurement of extensive implementation of antimicrobial stewardship in patients receiving intravenous antibiotics in a Japanese university hospital. Int J Clin Pract, 2012, 66(10): 999-1008. |
19. | Gums JG, Yancey RW Jr, Hamilton CA, et al. A randomized, prospective study measuring outcomes after antibiotic therapy intervention by a multidisciplinary consult team. Pharmacotherapy, 1999, 19(12): 1369-1377. |
20. | Rüttimann S, Keck B, Hartmeier C, et al. Long-term antibiotic cost savings from a comprehensive intervention program in a medical department of a university-affiliated teaching hospital. Clin Infect Dis, 2004, 38(3): 348-356. |
21. | Storey DF, Pate PG, Nguyen AT, et al. Implementation of an antimicrobial stewardship program on the medical-surgical service of a 100-bed community hospital. Antimicrob Resist Infect Control, 2012, 1(1): 32. |
22. | Valiquette L, Cossette B, Garant MP, et al. Impact of a reduction in the use of high-risk antibiotics on the course of an epidemic of Clostridium difficile-associated disease caused by the hypervirulent NAP1/027 strain. Clin Infect Dis, 2007, 45(Suppl 2): S112-S121. |
23. | Feazel LM, Malhotra A, Perencevich EN, et al. Effect of antibiotic stewardship programmes on Clostridium difficile incidence: a systematic review and meta-analysis. J Antimicrob Chemother, 2014, 69(7): 1748-1754. |
24. | Park SW, Ko S, An HS, et al. Implementation of central line-associated bloodstream infection prevention bundles in a surgical intensive care unit using peer tutoring. Antimicrob Resist Infect Control, 2017, 6: 103. |
25. | Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA, 2009, 302(21): 2323-2329. |
26. | Bitterman R, Hussein K, Leibovici L, et al. Systematic review of antibiotic consumption in acute care hospitals. Clin Microbiol Infect, 2016, 22(6): 561.e7-561.e19. |
27. | Holmes AH, Moore LS, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 2016, 387(10014): 176-187. |
28. | Barbier F, Luyt CE. Understanding resistance. Intensive Care Med, 2016, 42(12): 2080-2083. |
29. | Armand-Lefèvre L, Angebault C, Barbier F, et al. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother, 2013, 57(3): 1488-1495. |
30. | Teshome BF, Vouri SM, Hampton N, et al. Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy, 2019, 39(3): 261-270. |
31. | Teshome BF, Vouri SM, Hampton NB, et al. Evaluation of a ceiling effect on the association of new resistance development to antipseudomonal beta-lactam exposure in the critically ill. Infect Control Hosp Epidemiol, 2020, 41(4): 484-485. |
32. | Bhalodi AA, van Engelen TSR, Virk HS, et al. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother, 2019, 74(Suppl 1): i6-i15. |
33. | Denny KJ, De Waele J, Laupland KB, et al. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect, 2020, 26(1): 35-40. |
34. | Woerther PL, Lepeule R, Burdet C, et al. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance?. Int J Antimicrob Agents, 2018, 52(6): 762-770. |
35. | Ruppé E, Burdet C, Grall N, et al. Impact of antibiotics on the intestinal microbiota needs to be re-defined to optimize antibiotic usage. Clin Microbiol Infect, 2018, 24(1): 3-5. |
36. | Tan BK, Vivier E, Bouziad KA, et al. A hospital-wide intervention replacing ceftriaxone with cefotaxime to reduce rate of healthcare-associated infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae in the intensive care unit. Intensive Care Med, 2018, 44(5): 672-673. |
37. | 宗景景, 刘春生, 付晓菲, 等. CRRT对脓毒症治疗中抗菌药物清除作用的影响. 中华危重病急救医学, 2017, 29(7): 662-665. |
38. | Boutrot M, Azougagh K, Guinard J, et al. Antibiotics with activity against intestinal anaerobes and the hazard of acquired colonization with ceftriaxone-resistant Gram-negative pathogens in ICU patients: a propensity score-based analysis. J Antimicrob Chemother, 2019, 74(10): 3095-3103. |
39. | De Waele J, Van Eeckhout C, Vanhaelewyn P, et al. Persistence of piperacillin concentrations after treatment discontinuation: in cauda venenum?. Intensive Care Med, 2019, 45(1): 130-131. |
40. | Barrasa-Villar JI, Aibar-Remón C, Prieto-Andrés P, et al. Impact on morbidity, mortality, and length of stay of hospital-acquired infections by resistant microorganisms. Clin Infect Dis, 2017, 65(4): 644-652. |
41. | Pickens CI, Wunderink RG. Principles and practice of antibiotic stewardship in the ICU. Chest, 2019, 156(1): 163-171. |
42. | Laupland KB, Zahar JR, Adrie C, et al. Determinants of temperature abnormalities and influence on outcome of critical illness. Crit Care Med, 2012, 40(1): 145-151. |
43. | Lam SW, Bauer SR, Fowler R, et al. Systematic review and meta-analysis of procalcitonin-guidance versus usual care for antimicrobial management in critically ill patients: focus on subgroups based on antibiotic initiation, cessation, or mixed strategies. Crit Care Med, 2018, 46(5): 684-690. |
44. | Schuetz P, Wirz Y, Sager R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis, 2018, 18(1): 95-107. |
45. | van Someren Gréve F, Juffermans NP, Bos LDJ, et al. Respiratory viruses in invasively ventilated critically ill patients-a prospective multicenter observational study. Crit Care Med, 2018, 46(1): 29-36. |
46. | Loubet P, Voiriot G, Houhou-Fidouh N, et al. Impact of respiratory viruses in hospital-acquired pneumonia in the intensive care unit: a single-center retrospective study. J Clin Virol, 2017, 91: 52-57. |
47. | Raman G, Avendano EE, Chan J, et al. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control, 2018, 7: 79. |
48. | Zahar JR, Blot S, Nordmann P, et al. Screening for intestinal carriage of extended-spectrum beta-lactamase-producing enterobacteriaceae in critically ill patients: expected benefits and evidence-based controversies. Clin Infect Dis, 2019, 68(12): 2125-2130. |
49. | Pulcini C, Binda F, Lamkang AS, et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin Microbiol Infect, 2019, 25(1): 20-25. |
50. | Fierens J, Depuydt PO, De Waele JJ. A practical approach to clinical antibiotic stewardship in the ICU patient with severe infection. Semin Respir Crit Care Med, 2019, 40(4): 435-446. |
51. | Carver PL, Lin SW, DePestel DD, et al. Impact of mecA gene testing and intervention by infectious disease clinical pharmacists on time to optimal antimicrobial therapy for Staphylococcus aureus bacteremia at a university hospital. J Clin Microbiol, 2008, 46(7): 2381-2383. |
52. | Gentry CA, Greenfield RA, Slater LN, et al. Outcomes of an antimicrobial control program in a teaching hospital. Am J Health Syst Pharm, 2000, 57(3): 268-274. |
53. | Cappelletty D, Jacobs D. Evaluating the impact of a pharmacist’s absence from an antimicrobial stewardship team. Am J Health Syst Pharm, 2013, 70(12): 1065-1069. |
54. | MacLaren R, Bond CA, Martin SJ, et al. Clinical and economic outcomes of involving pharmacists in the direct care of critically ill patients with infections. Crit Care Med, 2008, 36(12): 3184-3189. |
55. | Buehler SS, Madison B, Snyder SR, et al. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev, 2016, 29(1): 59-103. |
56. | Olans RN, Olans RD, DeMaria A Jr. The critical role of the staff nurse in antimicrobial stewardship-unrecognized, but already there. Clin Infect Dis, 2016, 62(1): 84-89. |
57. | Furuya EY, Dick A, Perencevich EN, et al. Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One, 2011, 6(1): e15452. |
58. | Huang WC, Wann SR, Lin SL, et al. Catheter-associated urinary tract infections in intensive care units can be reduced by prompting physicians to remove unnecessary catheters. Infect Control Hosp Epidemiol, 2004, 25(11): 974-978. |
59. | Parry MF, Grant B, Sestovic M. Successful reduction in catheter-associated urinary tract infections: focus on nurse-directed catheter removal. Am J Infect Control, 2013, 41(12): 1178-1181. |
60. | Huang AM, Newton D, Kunapuli A, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis, 2013, 57(9): 1237-1245. |
61. | Forrest GN, Roghmann MC, Toombs LS, et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother, 2008, 52(10): 3558-3563. |
62. | Perez KK, Olsen RJ, Musick WL, et al. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect, 2014, 69(3): 216-225. |
63. | Timbrook TT, Morton JB, McConeghy KW, et al. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis, 2017, 64(1): 15-23. |
64. | Ferrer R, Martínez ML, Gomà G, et al. Improved empirical antibiotic treatment of sepsis after an educational intervention: the ABISS-Edusepsis study. Crit Care, 2018, 22(1): 167. |
65. | Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med, 2017, 196(7): 856-863. |
66. | Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med, 2017, 376(23): 2235-2244. |
67. | Hiensch R, Poeran J, Saunders-Hao P, et al. Impact of an electronic sepsis initiative on antibiotic use and health care facility-onset Clostridium difficile infection rates. Am J Infect Control, 2017, 45(10): 1091-1100. |
68. | Seetharaman S, Wilson C, Landrum M, et al. Does use of electronic alerts for systemic inflammatory response syndrome (SIRS) to identify patients with sepsis improve mortality?. Am J Med, 2019, 132(7): 862-868. |
69. | Hranjec T, Rosenberger LH, Swenson B, et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis, 2012, 12(10): 774-780. |
70. | Kett DH, Cano E, Quartin AA, et al. Implementation of guidelines for management of possible multidrug-resistant pneumonia in intensive care: an observational, multicentre cohort study. Lancet Infect Dis, 2011, 11(3): 181-189. |
71. | Fagon JY, Chastre J, Wolff M, et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med, 2000, 132(8): 621-630. |
72. | Rhee C, Kadri SS, Dekker JP, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open, 2020, 3(4): e202899. |
73. | Webb BJ, Sorensen J, Jephson A, et al. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir J, 2019, 54(1): 1900057. |
74. | Peltan ID, Brown SM, Bledsoe JR, et al. ED door-to-antibiotic time and long-term mortality in sepsis. Chest, 2019, 155(5): 938-946. |
75. | Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med, 2017, 45(4): 623-629. |
76. | Ramos-Rincón JM, Fernández-Gil A, Merino E, et al. The quick sepsis-related organ failure assessment (qSOFA) is a good predictor of in-hospital mortality in very elderly patients with bloodstream infections: a retrospective observational study. Sci Rep, 2019, 9(1): 15075. |
77. | Prescott HC, Iwashyna TJ. Improving sepsis treatment by embracing diagnostic uncertainty. Ann Am Thorac Soc, 2019, 16(4): 426-429. |
78. | Klompas M, Calandra T, Singer M. Antibiotics for sepsis-finding the equilibrium. JAMA, 2018, 320(14): 1433-1434. |
79. | Klein Klouwenberg PM, Cremer OL, van Vught LA, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care, 2015, 19(1): 319. |
80. | Brink AJ. Epidemiology of carbapenem-resistant gram-negative infections globally. Curr Opin Infect Dis, 2019, 32(6): 609-616. |
81. | Brink AJ, Richards GA. The role of multidrug and extensive-drug resistant gam-negative bacteria in skin and soft tissue infections. Curr Opin Infect Dis, 2020, 33(2): 93-100. |
82. | De Waele JJ, Akova M, Antonelli M, et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med, 2018, 44(2): 189-196. |
83. | Burillo A, Muñoz P, Bouza E. Risk stratification for multidrug-resistant gram-negative infections in ICU patients. Curr Opin Infect Dis, 2019, 32(6): 626-637. |
84. | De Waele JJ, Schouten J, Beovic B, et al. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions-a viewpoint of experts. Intensive Care Med, 2020, 46(2): 236-244. |
85. | Tabah A, Bassetti M, Kollef MH, et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med, 2020, 46(2): 245-265. |
86. | Barlam TF, Cosgrove SE, Abbo LM, et al. Executive summary: implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis, 2016, 62(10): 1197-1202. |
87. | Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the centers for disease control and prevention. Clin Infect Dis, 2014, 59(Suppl 3): S97-S100. |
88. | Mathieu C, Pastene B, Cassir N, et al. Efficacy and safety of antimicrobial de-escalation as a clinical strategy. Expert Rev Anti Infect Ther, 2019, 17(2): 79-88. |
89. | Tabah A, Cotta MO, Garnacho-Montero J, et al. A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis, 2016, 62(8): 1009-1017. |
90. | Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med, 2014, 40(1): 32-40. |
91. | Weiss E, Zahar JR, Lesprit P, et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect, 2015, 21(7): 649.e1-e10. |
92. | De Bus L, Depuydt P, Steen J, et al. Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: the DIANA study. Intensive Care Med, 2020, 46(7): 1404-1417. |
93. | Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?. Clin Infect Dis, 2014, 58(8): 1072-1083. |
94. | De Waele JJ, Lipman J, Carlier M, et al. Subtleties in practical application of prolonged infusion of β-lactam antibiotics. Int J Antimicrob Agents, 2015, 45(5): 461-463. |
95. | Carlier M, Roberts JA, Stove V, et al. A simulation study reveals lack of pharmacokinetic/pharmacodynamic target attainment in de-escalated antibiotic therapy in critically ill patients. Antimicrob Agents Chemother, 2015, 59(8): 4689-4694. |
96. | Gill CM, Nicolau DP. Pharmacologic optimization of antibiotics for gram-negative infections. Curr Opin Infect Dis, 2019, 32(6): 647-655. |
97. | Crass RL, Rodvold KA, Mueller BA, et al. Renal dosing of antibiotics: are we jumping the gun?. Clin Infect Dis, 2019, 68(9): 1596-1602. |
98. | Ruiz J, Favieres C, Broch MJ, et al. Individualised antimicrobial dosing in critically ill patients undergoing continuous renal replacement therapy: focus on total drug clearance. Eur J Hosp Pharm, 2018, 25(3): 123-126. |
99. | Roberts JA, Taccone FS, Lipman J. Understanding PK/PD. Intensive Care Med, 2016, 42(11): 1797-1800. |
100. | Economou CJP, Wong G, McWhinney B, et al. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents, 2017, 49(5): 589-594. |
101. | D’Agata EM, Magal P, Olivier D, et al. Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol, 2007, 249(3): 487-499. |
102. | Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA, 2003, 290(19): 2588-2598. |
103. | Klompas M, Li L, Menchaca JT, et al. Ultra-short-course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings. Clin Infect Dis, 2017, 64(7): 870-876. |
104. | Montravers P, Tubach F, Lescot T, et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med, 2018, 44(3): 300-310. |
105. | Chotiprasitsakul D, Han JH, Cosgrove SE, et al. Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score-matched cohort. Clin Infect Dis, 2018, 66(2): 172-177. |
106. | De Waele JJ, Martin-Loeches I. Optimal duration of antibiotic treatment in gram-negative infections. Curr Opin Infect Dis, 2018, 31(6): 606-611. |
107. | Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A, 2018, 115(15): E3463-E3470. |
108. | van Engelen TSR, Wiersinga WJ, Scicluna BP, et al. Biomarkers in sepsis. Crit Care Clin, 2018, 34(1): 139-152. |
109. | Schuetz P, Christ-Crain M, Müller B. Procalcitonin and other biomarkers to improve assessment and antibiotic stewardship in infections-hope for hype?. Swiss Med Wkly, 2009, 139(23/24): 318-326. |
110. | Schuetz P, Raad I, Amin DN. Using procalcitonin-guided algorithms to improve antimicrobial therapy in ICU patients with respiratory infections and sepsis. Curr Opin Crit Care, 2013, 19(5): 453-460. |
111. | Wacker C, Prkno A, Brunkhorst FM, et al. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis, 2013, 13(5): 426-435. |
112. | Schuetz P, Beishuizen A, Broyles M, et al. Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use. Clin Chem Lab Med, 2019, 57(9): 1308-1318. |
113. | Schuetz P, Bolliger R, Merker M, et al. Procalcitonin-guided antibiotic therapy algorithms for different types of acute respiratory infections based on previous trials. Expert Rev Anti Infect Ther, 2018, 16(7): 555-564. |
114. | Huang DT, Yealy DM, Filbin MR, et al. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med, 2018, 379(3): 236-249. |
115. | Meier MA, Branche A, Neeser OL, et al. Procalcitonin-guided antibiotic treatment in patients with positive blood cultures: a patient-level meta-analysis of randomized trials. Clin Infect Dis, 2019, 69(3): 388-396. |
116. | Pestotnik SL, Evans RS, Burke JP, et al. Therapeutic antibiotic monitoring: surveillance using a computerized expert system. Am J Med, 1990, 88(1): 43-48. |
117. | Bailly S, Meyfroidt G, Timsit JF. What’s new in ICU in 2050: big data and machine learning. Intensive Care Med, 2018, 44(9): 1524-1527. |
118. | Salluh JIF, Chiche JD, Reis CE, et al. New perspectives to improve critical care benchmarking. Ann Intensive Care, 2018, 8(1): 17. |
119. | Evans RS, Pestotnik SL, Classen DC, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med, 1998, 338(4): 232-238. |
120. | Laka M, Milazzo A, Merlin T. Can evidence-based decision support tools transform antibiotic management? A systematic review and meta-analyses. J Antimicrob Chemother, 2020, 75(5): 1099-1111. |
121. | Buising KL, Thursky KA, Robertson MB, et al. Electronic antibiotic stewardship-reduced consumption of broad-spectrum antibiotics using a computerized antimicrobial approval system in a hospital setting. J Antimicrob Chemother, 2008, 62(3): 608-616. |
122. | Kaki R, Elligsen M, Walker S, et al. Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother, 2011, 66(6): 1223-1230. |
123. | Karanika S, Paudel S, Grigoras C, et al. Systematic review and meta-analysis of clinical and economic outcomes from the implementation of hospital-based antimicrobial stewardship programs. Antimicrob Agents Chemother, 2016, 60(8): 4840-4852. |
124. | Baur D, Gladstone BP, Burkert F, et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect Dis, 2017, 17(9): 990-1001. |
125. | Bassetti M, Giacobbe DR, Vena A, et al. Challenges and research priorities to progress the impact of antimicrobial stewardship. Drugs Context, 2019, 8: 212600. |
- 1. Versporten A, Zarb P, Caniaux I, et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health, 2018, 6(6): e619-e629.
- 2. Bassetti M, De Waele JJ, Eggimann P, et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med, 2015, 41(5): 776-795.
- 3. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 2017, 43(3): 304-377.
- 4. Bergmans DC, Bonten MJ, Gaillard CA, et al. Indications for antibiotic use in ICU patients: a one-year prospective surveillance. J Antimicrob Chemother, 1997, 39(4): 527-535.
- 5. McGowan JE Jr, Gerding DN. Does antibiotic restriction prevent resistance?. New Horiz, 1996, 4(3): 370-376.
- 6. Chiotos K, Tamma PD, Gerber JS. Antibiotic stewardship in the intensive care unit: challenges and opportunities. Infect Control Hosp Epidemiol, 2019, 40(6): 693-698.
- 7. Dyar OJ, Huttner B, Schouten J, et al. What is antimicrobial stewardship?. Clin Microbiol Infect, 2017, 23(11): 793-798.
- 8. Shlaes DM, Gerding DN, John JF Jr, et al. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the prevention of antimicrobial resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis, 1997, 25(3): 584-599.
- 9. Gould IM. Stewardship of antibiotic use and resistance surveillance: the international scene. J Hosp Infect, 1999(Suppl 43): S253-S260.
- 10. Dellit TH, Owens RC, McGowan JE Jr, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis, 2007, 44(2): 159-177.
- 11. Society for Healthcare Epidemiology of America, Infectious Diseases Society of America, Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect Control Hosp Epidemiol, 2012, 33(4): 322-327.
- 12. Timsit JF, Bassetti M, Cremer O, et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med, 2019, 45(2): 172-189.
- 13. Tamma PD, Miller MA, Cosgrove SE. Rethinking how antibiotics are prescribed: incorporating the 4 moments of antibiotic decision making into clinical practice. JAMA, 2019, 321(2): 139-140.
- 14. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis, 2016, 62(10): e51-e77.
- 15. Ntagiopoulos PG, Paramythiotou E, Antoniadou A, et al. Impact of an antibiotic restriction policy on the antibiotic resistance patterns of gram-negative microorganisms in an intensive care unit in Greece. Int J Antimicrob Agents, 2007, 30(4): 360-365.
- 16. Brahmi N, Blel Y, Kouraichi N, et al. Impact of antibiotic use and prescribing policy in a Tunisian intensive care unit. Med Mal Infect, 2006, 36(9): 460-465.
- 17. Peto Z, Benko R, Matuz M, et al. Results of a local antibiotic management program on antibiotic use in a tertiary intensive care unit in Hungary. Infection, 2008, 36(6): 560-564.
- 18. Niwa T, Shinoda Y, Suzuki A, et al. Outcome measurement of extensive implementation of antimicrobial stewardship in patients receiving intravenous antibiotics in a Japanese university hospital. Int J Clin Pract, 2012, 66(10): 999-1008.
- 19. Gums JG, Yancey RW Jr, Hamilton CA, et al. A randomized, prospective study measuring outcomes after antibiotic therapy intervention by a multidisciplinary consult team. Pharmacotherapy, 1999, 19(12): 1369-1377.
- 20. Rüttimann S, Keck B, Hartmeier C, et al. Long-term antibiotic cost savings from a comprehensive intervention program in a medical department of a university-affiliated teaching hospital. Clin Infect Dis, 2004, 38(3): 348-356.
- 21. Storey DF, Pate PG, Nguyen AT, et al. Implementation of an antimicrobial stewardship program on the medical-surgical service of a 100-bed community hospital. Antimicrob Resist Infect Control, 2012, 1(1): 32.
- 22. Valiquette L, Cossette B, Garant MP, et al. Impact of a reduction in the use of high-risk antibiotics on the course of an epidemic of Clostridium difficile-associated disease caused by the hypervirulent NAP1/027 strain. Clin Infect Dis, 2007, 45(Suppl 2): S112-S121.
- 23. Feazel LM, Malhotra A, Perencevich EN, et al. Effect of antibiotic stewardship programmes on Clostridium difficile incidence: a systematic review and meta-analysis. J Antimicrob Chemother, 2014, 69(7): 1748-1754.
- 24. Park SW, Ko S, An HS, et al. Implementation of central line-associated bloodstream infection prevention bundles in a surgical intensive care unit using peer tutoring. Antimicrob Resist Infect Control, 2017, 6: 103.
- 25. Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA, 2009, 302(21): 2323-2329.
- 26. Bitterman R, Hussein K, Leibovici L, et al. Systematic review of antibiotic consumption in acute care hospitals. Clin Microbiol Infect, 2016, 22(6): 561.e7-561.e19.
- 27. Holmes AH, Moore LS, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 2016, 387(10014): 176-187.
- 28. Barbier F, Luyt CE. Understanding resistance. Intensive Care Med, 2016, 42(12): 2080-2083.
- 29. Armand-Lefèvre L, Angebault C, Barbier F, et al. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother, 2013, 57(3): 1488-1495.
- 30. Teshome BF, Vouri SM, Hampton N, et al. Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy, 2019, 39(3): 261-270.
- 31. Teshome BF, Vouri SM, Hampton NB, et al. Evaluation of a ceiling effect on the association of new resistance development to antipseudomonal beta-lactam exposure in the critically ill. Infect Control Hosp Epidemiol, 2020, 41(4): 484-485.
- 32. Bhalodi AA, van Engelen TSR, Virk HS, et al. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother, 2019, 74(Suppl 1): i6-i15.
- 33. Denny KJ, De Waele J, Laupland KB, et al. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect, 2020, 26(1): 35-40.
- 34. Woerther PL, Lepeule R, Burdet C, et al. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance?. Int J Antimicrob Agents, 2018, 52(6): 762-770.
- 35. Ruppé E, Burdet C, Grall N, et al. Impact of antibiotics on the intestinal microbiota needs to be re-defined to optimize antibiotic usage. Clin Microbiol Infect, 2018, 24(1): 3-5.
- 36. Tan BK, Vivier E, Bouziad KA, et al. A hospital-wide intervention replacing ceftriaxone with cefotaxime to reduce rate of healthcare-associated infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae in the intensive care unit. Intensive Care Med, 2018, 44(5): 672-673.
- 37. 宗景景, 刘春生, 付晓菲, 等. CRRT对脓毒症治疗中抗菌药物清除作用的影响. 中华危重病急救医学, 2017, 29(7): 662-665.
- 38. Boutrot M, Azougagh K, Guinard J, et al. Antibiotics with activity against intestinal anaerobes and the hazard of acquired colonization with ceftriaxone-resistant Gram-negative pathogens in ICU patients: a propensity score-based analysis. J Antimicrob Chemother, 2019, 74(10): 3095-3103.
- 39. De Waele J, Van Eeckhout C, Vanhaelewyn P, et al. Persistence of piperacillin concentrations after treatment discontinuation: in cauda venenum?. Intensive Care Med, 2019, 45(1): 130-131.
- 40. Barrasa-Villar JI, Aibar-Remón C, Prieto-Andrés P, et al. Impact on morbidity, mortality, and length of stay of hospital-acquired infections by resistant microorganisms. Clin Infect Dis, 2017, 65(4): 644-652.
- 41. Pickens CI, Wunderink RG. Principles and practice of antibiotic stewardship in the ICU. Chest, 2019, 156(1): 163-171.
- 42. Laupland KB, Zahar JR, Adrie C, et al. Determinants of temperature abnormalities and influence on outcome of critical illness. Crit Care Med, 2012, 40(1): 145-151.
- 43. Lam SW, Bauer SR, Fowler R, et al. Systematic review and meta-analysis of procalcitonin-guidance versus usual care for antimicrobial management in critically ill patients: focus on subgroups based on antibiotic initiation, cessation, or mixed strategies. Crit Care Med, 2018, 46(5): 684-690.
- 44. Schuetz P, Wirz Y, Sager R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis, 2018, 18(1): 95-107.
- 45. van Someren Gréve F, Juffermans NP, Bos LDJ, et al. Respiratory viruses in invasively ventilated critically ill patients-a prospective multicenter observational study. Crit Care Med, 2018, 46(1): 29-36.
- 46. Loubet P, Voiriot G, Houhou-Fidouh N, et al. Impact of respiratory viruses in hospital-acquired pneumonia in the intensive care unit: a single-center retrospective study. J Clin Virol, 2017, 91: 52-57.
- 47. Raman G, Avendano EE, Chan J, et al. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control, 2018, 7: 79.
- 48. Zahar JR, Blot S, Nordmann P, et al. Screening for intestinal carriage of extended-spectrum beta-lactamase-producing enterobacteriaceae in critically ill patients: expected benefits and evidence-based controversies. Clin Infect Dis, 2019, 68(12): 2125-2130.
- 49. Pulcini C, Binda F, Lamkang AS, et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin Microbiol Infect, 2019, 25(1): 20-25.
- 50. Fierens J, Depuydt PO, De Waele JJ. A practical approach to clinical antibiotic stewardship in the ICU patient with severe infection. Semin Respir Crit Care Med, 2019, 40(4): 435-446.
- 51. Carver PL, Lin SW, DePestel DD, et al. Impact of mecA gene testing and intervention by infectious disease clinical pharmacists on time to optimal antimicrobial therapy for Staphylococcus aureus bacteremia at a university hospital. J Clin Microbiol, 2008, 46(7): 2381-2383.
- 52. Gentry CA, Greenfield RA, Slater LN, et al. Outcomes of an antimicrobial control program in a teaching hospital. Am J Health Syst Pharm, 2000, 57(3): 268-274.
- 53. Cappelletty D, Jacobs D. Evaluating the impact of a pharmacist’s absence from an antimicrobial stewardship team. Am J Health Syst Pharm, 2013, 70(12): 1065-1069.
- 54. MacLaren R, Bond CA, Martin SJ, et al. Clinical and economic outcomes of involving pharmacists in the direct care of critically ill patients with infections. Crit Care Med, 2008, 36(12): 3184-3189.
- 55. Buehler SS, Madison B, Snyder SR, et al. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev, 2016, 29(1): 59-103.
- 56. Olans RN, Olans RD, DeMaria A Jr. The critical role of the staff nurse in antimicrobial stewardship-unrecognized, but already there. Clin Infect Dis, 2016, 62(1): 84-89.
- 57. Furuya EY, Dick A, Perencevich EN, et al. Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One, 2011, 6(1): e15452.
- 58. Huang WC, Wann SR, Lin SL, et al. Catheter-associated urinary tract infections in intensive care units can be reduced by prompting physicians to remove unnecessary catheters. Infect Control Hosp Epidemiol, 2004, 25(11): 974-978.
- 59. Parry MF, Grant B, Sestovic M. Successful reduction in catheter-associated urinary tract infections: focus on nurse-directed catheter removal. Am J Infect Control, 2013, 41(12): 1178-1181.
- 60. Huang AM, Newton D, Kunapuli A, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis, 2013, 57(9): 1237-1245.
- 61. Forrest GN, Roghmann MC, Toombs LS, et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother, 2008, 52(10): 3558-3563.
- 62. Perez KK, Olsen RJ, Musick WL, et al. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect, 2014, 69(3): 216-225.
- 63. Timbrook TT, Morton JB, McConeghy KW, et al. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis, 2017, 64(1): 15-23.
- 64. Ferrer R, Martínez ML, Gomà G, et al. Improved empirical antibiotic treatment of sepsis after an educational intervention: the ABISS-Edusepsis study. Crit Care, 2018, 22(1): 167.
- 65. Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med, 2017, 196(7): 856-863.
- 66. Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med, 2017, 376(23): 2235-2244.
- 67. Hiensch R, Poeran J, Saunders-Hao P, et al. Impact of an electronic sepsis initiative on antibiotic use and health care facility-onset Clostridium difficile infection rates. Am J Infect Control, 2017, 45(10): 1091-1100.
- 68. Seetharaman S, Wilson C, Landrum M, et al. Does use of electronic alerts for systemic inflammatory response syndrome (SIRS) to identify patients with sepsis improve mortality?. Am J Med, 2019, 132(7): 862-868.
- 69. Hranjec T, Rosenberger LH, Swenson B, et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis, 2012, 12(10): 774-780.
- 70. Kett DH, Cano E, Quartin AA, et al. Implementation of guidelines for management of possible multidrug-resistant pneumonia in intensive care: an observational, multicentre cohort study. Lancet Infect Dis, 2011, 11(3): 181-189.
- 71. Fagon JY, Chastre J, Wolff M, et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med, 2000, 132(8): 621-630.
- 72. Rhee C, Kadri SS, Dekker JP, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open, 2020, 3(4): e202899.
- 73. Webb BJ, Sorensen J, Jephson A, et al. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir J, 2019, 54(1): 1900057.
- 74. Peltan ID, Brown SM, Bledsoe JR, et al. ED door-to-antibiotic time and long-term mortality in sepsis. Chest, 2019, 155(5): 938-946.
- 75. Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med, 2017, 45(4): 623-629.
- 76. Ramos-Rincón JM, Fernández-Gil A, Merino E, et al. The quick sepsis-related organ failure assessment (qSOFA) is a good predictor of in-hospital mortality in very elderly patients with bloodstream infections: a retrospective observational study. Sci Rep, 2019, 9(1): 15075.
- 77. Prescott HC, Iwashyna TJ. Improving sepsis treatment by embracing diagnostic uncertainty. Ann Am Thorac Soc, 2019, 16(4): 426-429.
- 78. Klompas M, Calandra T, Singer M. Antibiotics for sepsis-finding the equilibrium. JAMA, 2018, 320(14): 1433-1434.
- 79. Klein Klouwenberg PM, Cremer OL, van Vught LA, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care, 2015, 19(1): 319.
- 80. Brink AJ. Epidemiology of carbapenem-resistant gram-negative infections globally. Curr Opin Infect Dis, 2019, 32(6): 609-616.
- 81. Brink AJ, Richards GA. The role of multidrug and extensive-drug resistant gam-negative bacteria in skin and soft tissue infections. Curr Opin Infect Dis, 2020, 33(2): 93-100.
- 82. De Waele JJ, Akova M, Antonelli M, et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med, 2018, 44(2): 189-196.
- 83. Burillo A, Muñoz P, Bouza E. Risk stratification for multidrug-resistant gram-negative infections in ICU patients. Curr Opin Infect Dis, 2019, 32(6): 626-637.
- 84. De Waele JJ, Schouten J, Beovic B, et al. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions-a viewpoint of experts. Intensive Care Med, 2020, 46(2): 236-244.
- 85. Tabah A, Bassetti M, Kollef MH, et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med, 2020, 46(2): 245-265.
- 86. Barlam TF, Cosgrove SE, Abbo LM, et al. Executive summary: implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis, 2016, 62(10): 1197-1202.
- 87. Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the centers for disease control and prevention. Clin Infect Dis, 2014, 59(Suppl 3): S97-S100.
- 88. Mathieu C, Pastene B, Cassir N, et al. Efficacy and safety of antimicrobial de-escalation as a clinical strategy. Expert Rev Anti Infect Ther, 2019, 17(2): 79-88.
- 89. Tabah A, Cotta MO, Garnacho-Montero J, et al. A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis, 2016, 62(8): 1009-1017.
- 90. Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med, 2014, 40(1): 32-40.
- 91. Weiss E, Zahar JR, Lesprit P, et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect, 2015, 21(7): 649.e1-e10.
- 92. De Bus L, Depuydt P, Steen J, et al. Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: the DIANA study. Intensive Care Med, 2020, 46(7): 1404-1417.
- 93. Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?. Clin Infect Dis, 2014, 58(8): 1072-1083.
- 94. De Waele JJ, Lipman J, Carlier M, et al. Subtleties in practical application of prolonged infusion of β-lactam antibiotics. Int J Antimicrob Agents, 2015, 45(5): 461-463.
- 95. Carlier M, Roberts JA, Stove V, et al. A simulation study reveals lack of pharmacokinetic/pharmacodynamic target attainment in de-escalated antibiotic therapy in critically ill patients. Antimicrob Agents Chemother, 2015, 59(8): 4689-4694.
- 96. Gill CM, Nicolau DP. Pharmacologic optimization of antibiotics for gram-negative infections. Curr Opin Infect Dis, 2019, 32(6): 647-655.
- 97. Crass RL, Rodvold KA, Mueller BA, et al. Renal dosing of antibiotics: are we jumping the gun?. Clin Infect Dis, 2019, 68(9): 1596-1602.
- 98. Ruiz J, Favieres C, Broch MJ, et al. Individualised antimicrobial dosing in critically ill patients undergoing continuous renal replacement therapy: focus on total drug clearance. Eur J Hosp Pharm, 2018, 25(3): 123-126.
- 99. Roberts JA, Taccone FS, Lipman J. Understanding PK/PD. Intensive Care Med, 2016, 42(11): 1797-1800.
- 100. Economou CJP, Wong G, McWhinney B, et al. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents, 2017, 49(5): 589-594.
- 101. D’Agata EM, Magal P, Olivier D, et al. Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol, 2007, 249(3): 487-499.
- 102. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA, 2003, 290(19): 2588-2598.
- 103. Klompas M, Li L, Menchaca JT, et al. Ultra-short-course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings. Clin Infect Dis, 2017, 64(7): 870-876.
- 104. Montravers P, Tubach F, Lescot T, et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med, 2018, 44(3): 300-310.
- 105. Chotiprasitsakul D, Han JH, Cosgrove SE, et al. Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score-matched cohort. Clin Infect Dis, 2018, 66(2): 172-177.
- 106. De Waele JJ, Martin-Loeches I. Optimal duration of antibiotic treatment in gram-negative infections. Curr Opin Infect Dis, 2018, 31(6): 606-611.
- 107. Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A, 2018, 115(15): E3463-E3470.
- 108. van Engelen TSR, Wiersinga WJ, Scicluna BP, et al. Biomarkers in sepsis. Crit Care Clin, 2018, 34(1): 139-152.
- 109. Schuetz P, Christ-Crain M, Müller B. Procalcitonin and other biomarkers to improve assessment and antibiotic stewardship in infections-hope for hype?. Swiss Med Wkly, 2009, 139(23/24): 318-326.
- 110. Schuetz P, Raad I, Amin DN. Using procalcitonin-guided algorithms to improve antimicrobial therapy in ICU patients with respiratory infections and sepsis. Curr Opin Crit Care, 2013, 19(5): 453-460.
- 111. Wacker C, Prkno A, Brunkhorst FM, et al. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis, 2013, 13(5): 426-435.
- 112. Schuetz P, Beishuizen A, Broyles M, et al. Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use. Clin Chem Lab Med, 2019, 57(9): 1308-1318.
- 113. Schuetz P, Bolliger R, Merker M, et al. Procalcitonin-guided antibiotic therapy algorithms for different types of acute respiratory infections based on previous trials. Expert Rev Anti Infect Ther, 2018, 16(7): 555-564.
- 114. Huang DT, Yealy DM, Filbin MR, et al. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med, 2018, 379(3): 236-249.
- 115. Meier MA, Branche A, Neeser OL, et al. Procalcitonin-guided antibiotic treatment in patients with positive blood cultures: a patient-level meta-analysis of randomized trials. Clin Infect Dis, 2019, 69(3): 388-396.
- 116. Pestotnik SL, Evans RS, Burke JP, et al. Therapeutic antibiotic monitoring: surveillance using a computerized expert system. Am J Med, 1990, 88(1): 43-48.
- 117. Bailly S, Meyfroidt G, Timsit JF. What’s new in ICU in 2050: big data and machine learning. Intensive Care Med, 2018, 44(9): 1524-1527.
- 118. Salluh JIF, Chiche JD, Reis CE, et al. New perspectives to improve critical care benchmarking. Ann Intensive Care, 2018, 8(1): 17.
- 119. Evans RS, Pestotnik SL, Classen DC, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med, 1998, 338(4): 232-238.
- 120. Laka M, Milazzo A, Merlin T. Can evidence-based decision support tools transform antibiotic management? A systematic review and meta-analyses. J Antimicrob Chemother, 2020, 75(5): 1099-1111.
- 121. Buising KL, Thursky KA, Robertson MB, et al. Electronic antibiotic stewardship-reduced consumption of broad-spectrum antibiotics using a computerized antimicrobial approval system in a hospital setting. J Antimicrob Chemother, 2008, 62(3): 608-616.
- 122. Kaki R, Elligsen M, Walker S, et al. Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother, 2011, 66(6): 1223-1230.
- 123. Karanika S, Paudel S, Grigoras C, et al. Systematic review and meta-analysis of clinical and economic outcomes from the implementation of hospital-based antimicrobial stewardship programs. Antimicrob Agents Chemother, 2016, 60(8): 4840-4852.
- 124. Baur D, Gladstone BP, Burkert F, et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect Dis, 2017, 17(9): 990-1001.
- 125. Bassetti M, Giacobbe DR, Vena A, et al. Challenges and research priorities to progress the impact of antimicrobial stewardship. Drugs Context, 2019, 8: 212600.
-
Previous Article
Infection risk and prevention and control measures of nosocomial infection in urban or regional clustered epidemic -
Next Article
Interpretation of Joint Healthcare Infection Society (HIS) and Infection Prevention Society (IPS) Guidelines for the Prevention and Control of Meticillin-resistant Staphylococcus aureus (MRSA) in Healthcare Facilities