1. |
Alkhayyat M, Kumar P, Sanaka KO, et al. Chemoprevention in Barrett’s esophagus and esophageal adenocarcinoma. Therap Adv Gastroenterol, 2021, 14: 17562848211033730.
|
2. |
Peters Y, van Grinsven E, Siersema PD. Systematic review with meta-analysis: the effects of family history on the risk of Barrett’s oesophagus and oesophageal adenocarcinoma. Aliment Pharmacol Ther, 2021, 54(7): 868-879.
|
3. |
Peters Y, Al-Kaabi A, Shaheen NJ, et al. Barrett oesophagus. Nat Rev Dis Primers, 2019, 5(1): 35.
|
4. |
Michopoulos S. Critical appraisal of guidelines for screening and surveillance of Barrett’s esophagus. Ann Transl Med, 2018, 6(13): 259.
|
5. |
Klavan H, Russell MB, Macklin J, et al. Barrett’s esophagus: a comprehensive review for the internist. Dis Mon, 2018, 64(11): 471-487.
|
6. |
Bresalier RS. Chemoprevention of Barrett’s esophagus and esophageal adenocarcinoma. Dig Dis Sci, 2018, 63(8): 2155-2162.
|
7. |
Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology, 2018, 154(2): 390-405.
|
8. |
Barko PC, McMichael MA, Swanson KS, et al. The gastrointestinal microbiome: a review. J Vet Intern Med, 2018, 32(1): 9-25.
|
9. |
Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms, 2020, 8(2): 308.
|
10. |
Nearing JT, DeClercq V, Van Limbergen J, et al. Assessing the variation within the oral microbiome of healthy adults. mSphere, 2020, 5(5): e00451-20.
|
11. |
Bernard R, Fazili I, Rajagopala SV, et al. Association between oral microbiome and esophageal diseases: a state-of-the-art review. Dig Dis, 2022, 40(3): 345-354.
|
12. |
Snider EJ, Compres G, Freedberg DE, et al. Barrett’s esophagus is associated with a distinct oral microbiome. Clin Transl Gastroenterol, 2018, 9(3): 135.
|
13. |
Okereke IC, Miller AL, Hamilton CF, et al. Microbiota of the oropharynx and endoscope compared to the esophagus. Sci Rep, 2019, 9(1): 10201.
|
14. |
Baba Y, Iwatsuki M, Yoshida N, et al. Review of the gut microbiome and esophageal cancer: Pathogenesis and potential clinical implications. Ann Gastroenterol Surg, 2017, 1(2): 99-104.
|
15. |
Yang L, Lu X, Nossa CW, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology, 2009, 137(2): 588-597.
|
16. |
Dong L, Yin J, Zhao J, et al. Microbial similarity and preference for specific sites in healthy oral cavity and esophagus. Front Microbiol, 2018, 9: 1603.
|
17. |
Liu N, Ando T, Ishiguro K, et al. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus. BMC Infect Dis, 2013, 13: 130.
|
18. |
Lopetuso LR, Severgnini M, Pecere S, et al. Esophageal microbiome signature in patients with Barrett’s esophagus and esophageal adenocarcinoma. PLoS One, 2020, 15(5): e0231789.
|
19. |
Okereke IC, Miller AL, Jupiter DC, et al. Microbiota detection patterns correlate with presence and severity of Barrett’s esophagus. Front Cell Infect Microbiol, 2021, 11: 555072.
|
20. |
Zhou J, Shrestha P, Qiu Z, et al. Distinct microbiota dysbiosis in patients with non-erosive reflux disease and esophageal adenocarcinoma. J Clin Med, 2020, 9(7): 2162.
|
21. |
Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality?. Aliment Pharmacol Ther, 2013, 37(11): 1084-1092.
|
22. |
He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 2019, 68(2): 289-300.
|
23. |
Babar M, Ryan AW, Anderson LA, et al. Genes of the interleukin-18 pathway are associated with susceptibility to Barrett’s esophagus and esophageal adenocarcinoma. Am J Gastroenterol, 2012, 107(9): 1331-1341.
|
24. |
Okereke I, Hamilton C, Reep G, et al. Microflora composition in the gastrointestinal tract in patients with Barrett’s esophagus. J Thorac Dis, 2019, 11(Suppl 12): S1581-S1587.
|
25. |
Zaidi AH, Kelly LA, Kreft RE, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer, 2016, 16: 52.
|
26. |
Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PLoS One, 2015, 10(6): e0129055.
|
27. |
Snider EJ, Freedberg DE, Abrams JA. Potential role of the microbiome in Barrett’s esophagus and esophageal adenocarcinoma. Dig Dis Sci, 2016, 61(8): 2217-2225.
|
28. |
Suhail M, Tarique M, Muhammad N, et al. A critical transcription factor NF-κB as a cancer therapeutic target and its inhibitors as cancer treatment options. Curr Med Chem, 2021, 28(21): 4117-4132.
|
29. |
Kohtz PD, Halpern AL, Eldeiry MA, et al. Toll-like receptor-4 is a mediator of proliferation in esophageal adenocarcinoma. Ann Thorac Surg, 2019, 107(1): 233-241.
|
30. |
Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res, 2012, 18(8): 2138-2144.
|
31. |
Jankowski JAZ, de Caestecker J, Love SB, et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet, 2018, 392(10145): 400-408.
|
32. |
Wilson KT, Fu S, Ramanujam KS, et al. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res, 1998, 58(14): 2929-2934.
|
33. |
Peter S, Pendergraft A, VanDerPol W, et al. Mucosa-associated microbiota in Barrett’s esophagus, dysplasia, and esophageal adenocarcinoma differ similarly compared with healthy controls. Clin Transl Gastroenterol, 2020, 11(8): e00199.
|
34. |
Di J, Cheng Y, Chang D, et al. A meta-analysis of the impact of obesity, metabolic syndrome, insulin resistance, and microbiome on the diagnosis of Barrett’s esophagus. Dig Dis, 2020, 38(3): 165-177.
|
35. |
Malfertheiner P, Megraud F, O’Morain CA, et al. European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection the Maastricht V/Florence consensus Report. Gut, 2017, 66(1): 6-30.
|
36. |
Sun QH, Zhang J, Shi YY, et al. Microbiome changes in the gastric mucosa and gastric juice in different histological stages of Helicobacter pylori-negative gastric cancers. World J Gastroenterol, 2022, 28(3): 365-380.
|
37. |
Jo HJ, Kim J, Kim N, et al. Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. Helicobacter, 2016, 21(5): 364-374.
|
38. |
Li TH, Qin Y, Sham PC, et al. Alterations in gastric microbiota after H. Pylori eradication and in different histological stages of gastric carcinogenesis. Sci Rep, 2017, 7: 44935.
|
39. |
Rajilic-Stojanovic M, Figueiredo C, Smet A, et al. Systematic review: gastric microbiota in health and disease. Aliment Pharmacol Ther, 2020, 51(6): 582-602.
|
40. |
Mladenova I. Clinical relevance of Helicobacter pylori infection. J Clin Med, 2021, 10(16): 3473.
|
41. |
Li M, Sun Y, Yang J, et al. Time trends and other sources of variation in Helicobacter pylori infection in mainland China: a systematic review and meta-analysis. Helicobacter, 2020, 25(5): e12729.
|
42. |
Liu WZ, Xie Y, Lu H, et al. Fifth Chinese National Consensus Report on the management of Helicobacter pylori infection. Helicobacter, 2018, 23(2): e12475.
|
43. |
Chen TH, Cheng HT, Yeh CT. Epidemiology changes in peptic ulcer diseases 18 years apart explored from the genetic aspects of Helicobacter pylori. Transl Res, 2021, 232: 115-120.
|
44. |
Lin Y, Zheng Y, Wang HL, et al. Global patterns and trends in gastric cancer incidence rates (1988-2012) and predictions to 2030. Gastroenterology, 2021, 161(1): 116-127.e8.
|
45. |
Schulz C, Kupčinskas J. Review - Helicobacter pylori and non-malignant upper gastro-intestinal diseases. Helicobacter, 2020, 25(Suppl 1): e12738.
|
46. |
Usui G, Shinozaki T, Jinno T, et al. Relationship between time-varying status of reflux esophagitis and Helicobacter pylori and progression to long-segment Barrett’s esophagus: time-dependent Cox proportional-hazards analysis. BMC Gastroenterol, 2020, 20(1): 270.
|
47. |
Fischbach LA, Graham DY, Kramer JR, et al. Association between Helicobacter pylori and Barrett’s esophagus: a case-control study. Am J Gastroenterol, 2014, 109(3): 357-368.
|
48. |
Wang Z, Shaheen NJ, Whiteman DC, et al. Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: an analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium. Am J Gastroenterol, 2018, 113(8): 1148-1155.
|
49. |
郭薇薇, 陈玲, 缪鑫, 等. 幽门螺杆菌对胃食管反流病影响的 Meta 分析. 胃肠病学和肝病学杂志, 2017, 26(10): 1133-1137.
|
50. |
Erőss B, Farkas N, Vincze Á, et al. Helicobacter pylori infection reduces the risk of Barrett’s esophagus: a meta-analysis and systematic review. Helicobacter, 2018, 23(4): e12504.
|
51. |
Fischbach LA, Nordenstedt H, Kramer JR, et al. The association between Barrett’s esophagus and Helicobacter pylori infection: a meta-analysis. Helicobacter, 2012, 17(3): 163-175.
|
52. |
Lv J, Guo L, Liu JJ, et al. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol, 2019, 25(18): 2149-2161.
|
53. |
Usui G, Sato H, Shinozaki T, et al. Association between Helicobacter pylori infection and short-segment/long-segment Barrett’s esophagus in a Japanese population: a large cross-sectional study. J Clin Gastroenterol, 2020, 54(5): 439-444.
|
54. |
Yucel O. Interactions between Helicobacter pylori and gastroesophageal reflux disease. Esophagus, 2019, 16(1): 52-62.
|
55. |
Chu YX, Wang WH, Dai Y, et al. Esophageal Helicobacter pylori colonization aggravates esophageal injury caused by reflux. World J Gastroenterol, 2014, 20(42): 15715-15726.
|
56. |
Doorakkers E, Lagergren J, Santoni G, et al. Helicobacter pylori eradication treatment and the risk of Barrett’s esophagus and esophageal adenocarcinoma. Helicobacter, 2020, 25(3): e12688.
|
57. |
Adachi K, Ishimura N, Kishi K, et al. Prevalence of Barrett’s epithelium shown by endoscopic observations with linked color imaging in subjects with different H. pylori infection statuses. Intern Med, 2021, 60(5): 667-674.
|
58. |
Aghayeva S, Mara KC, Katzka DA. The impact of Helicobacter pylori on the presence of Barrett’s esophagus in Azerbaijan, a high-prevalence area of infection. Dis Esophagus, 2019, 32(11): doz053.
|
59. |
Zhou Z, Dong H, Huang Y, et al. Recombinant Bacillus subtilis spores expressing cholera toxin B subunit and Helicobacter pylori urease B confer protection against H. pylori in mice. J Med Microbiol, 2017, 66(1): 83-89.
|
60. |
Yang L, Tian ZB, Yu YN, et al. Saccharomyces boulardii administration can inhibit the formation of gastric lymphoid follicles induced by Helicobacter suis infection. Pathog Dis, 2017, 75(1): ftx006.
|
61. |
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728): 1635-1638.
|
62. |
Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health. BMJ, 2018, 361: k2179.
|
63. |
Sinha T, Vich Vila A, Garmaeva S, et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes, 2019, 10(3): 358-366.
|
64. |
Depommier C, Everard A, Druart C, Plovier H, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med, 2019, 25(7): 1096-1103.
|
65. |
Gui X, Yang Z, Li MD. Effect of cigarette smoke on gut microbiota: state of knowledge. Front Physiol, 2021, 12: 673341.
|
66. |
Zhang T, Li Q, Cheng L, et al. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol, 2019, 12(6): 1109-1125.
|
67. |
Macchione IG, Lopetuso LR, Ianiro G, et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci, 2019, 23(18): 8075-8083.
|
68. |
Ouyang J, Lin J, Isnard S, et al. The bacterium Akkermansia muciniphila: a sentinel for gut permeability and its relevance to HIV-related inflammation. Front Immunol, 2020, 11: 645.
|
69. |
Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes, 2018, 9(4): 308-325.
|
70. |
Salazar N, Arboleya S, Fernández-Navarro T, et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: a cross-sectional study. Nutrients, 2019, 11(8): 1765.
|
71. |
Leeuwendaal NK, Cryan JF, Schellekens H. Gut peptides and the microbiome: focus on ghrelin. Curr Opin Endocrinol Diabetes Obes, 2021, 28(2): 243-252.
|
72. |
Shaheen NJ, Falk GW, Iyer PG, et al. Diagnosis and management of Barrett’s esophagus: an updated ACG guideline. Am J Gastroenterol, 2022, 117(4): 559-587.
|