1. |
Ding S, Dai Q, Huang H, et al. An overview of muscle atrophy. Adv Exp Med Biol, 2018, 1088: 3-19.
|
2. |
Keller K. Sarcopenia. Wien Med Wochenschr, 2019, 169(7/8): 157-172.
|
3. |
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet, 2019, 393(10191): 2636-2646.
|
4. |
孙建琴, 张坚, 常翠青, 等. 肌肉衰减综合征营养与运动干预中国专家共识(节录). 营养学报, 2015, 37(4): 320-324.
|
5. |
Olaniyan ET, O’Halloran F, McCarthy AL. Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults. Nutr Res Rev, 2021, 34(1): 147-157.
|
6. |
李红毅, 白树民, 黄贱英, 等. 大豆低聚肽对模拟失重大鼠肌萎缩的防护作用. 营养学报, 2012, 34(1): 46-49, 54.
|
7. |
黄梦君, 许淑芳. 食源性低聚肽的消化吸收机制及营养功能的研究进展. 中国食物与营养, 2021, 27(10): 55-58.
|
8. |
Zdzieblik D, Oesser S, Baumstark MW, et al. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. Br J Nutr, 2015, 114(8): 1237-1245.
|
9. |
刘文颖, 林峰, 金振涛, 等. 玉米低聚肽的体外抗氧化作用. 食品科学, 2011, 32(5): 22-26.
|
10. |
陶景景. 游泳联合玉米低聚肽提高小鼠运动能力和促进心肌保护的作用及机制研究. 武汉: 武汉体育学院, 2019.
|
11. |
潘兴昌, 曾瑜, 刘文颖, 等. 玉米低聚肽和姜黄素对小鼠的醒酒功能研究. 食品与发酵工业, 2016, 42(11): 25-34.
|
12. |
林峰, 梁锐, 王军波, 等. 玉米低聚肽降血压作用的实验研究. 食品与发酵工业, 2009(8): 1-4.
|
13. |
王梦莹, 马丽娜, 高鹤, 等. 玉米低聚肽对肥胖小鼠预防性干预的效果研究//营养研究与临床实践—第十四届全国营养科学大会暨第十一届亚太临床营养大会、第二届全球华人营养科学家大会论文摘要汇编. 南京: 中国营养学会, 2019: 477-478.
|
14. |
Wilkinson DJ, Hossain T, Limb MC, et al. Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism. Clin Nutr, 2018, 37(6 Pt A): 2068-2075.
|
15. |
Fuchs CJ, Hermans WJH, Holwerda AM, et al. Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial. Am J Clin Nutr, 2019, 110(4): 862-872.
|
16. |
Mobley CB, Fox CD, Ferguson BS, et al. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy. J Int Soc Sports Nutr, 2014, 11: 38.
|
17. |
Mobley CB, Hornberger TA, Fox CD, et al. Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. J Int Soc Sports Nutr, 2015, 12: 32.
|
18. |
Yamamoto D, Maki T, Herningtyas EH, et al. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve, 2010, 41(6): 819-827.
|
19. |
Maki T, Yamamoto D, Nakanishi S, et al. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr Res, 2012, 32(9): 676-683.
|
20. |
Yamanashi K, Kinugawa S, Fukushima A, et al. Branched-chain amino acid supplementation ameliorates angiotensin II-induced skeletal muscle atrophy. Life Sci, 2020, 250: 117593.
|
21. |
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci, 2020, 70(1): 40.
|
22. |
Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun, 2021, 12(1): 330.
|
23. |
Kobayashi H, Kato H, Hirabayashi Y, et al. Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr, 2006, 136(1 Suppl): 234S-236S.
|
24. |
Børsheim E, Bui QU, Tissier S, et al. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin Nutr, 2008, 27(2): 189-195.
|
25. |
Zhao Q, Shen H, Su KJ, et al. A joint analysis of metabolomic profiles associated with muscle mass and strength in Caucasian women. Aging (Albany NY), 2018, 10(10): 2624-2635.
|
26. |
Murphy RA, Moore SC, Playdon M, et al. Metabolites associated with lean mass and adiposity in older black men. J Gerontol A Biol Sci Med Sci, 2017, 72(10): 1352-1359.
|
27. |
杨蕾. 中老年人肌肉减少症与代谢综合征的相关性及代谢组学研究. 乌鲁木齐: 新疆医科大学, 2020.
|
28. |
鲁翰霖. 基于代谢组学的早期骨骼肌损伤时间推断的研究. 太原: 山西医科大学, 2019.
|