1. |
Yang L, Xing G, Wang L, et al. Acute kidney injury in China: a cross-sectional survey. Lancet, 2015, 386(10002): 1465-1471.
|
2. |
Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet, 2019, 394(10212): 1949-1964.
|
3. |
Lin X, Jin H, Chai Y, et al. Cellular senescence and acute kidney injury. Pediatr Nephrol, 2022.
|
4. |
Li Y, Lerman LO. Cellular senescence: a new player in kidney injury. Hypertension, 2020, 76(4): 1069-1075.
|
5. |
Docherty MH, O’Sullivan ED, Bonventre JV, et al. Cellular senescence in the kidney. J Am Soc Nephrol, 2019, 30(5): 726-736.
|
6. |
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol, 2018, 28(6): 436-453.
|
7. |
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab, 2021, 3(10): 1290-1301.
|
8. |
Muñoz-Espín D, Cañamero M, Maraver A, et al. Programmed cell senescence during mammalian embryonic development. Cell, 2013, 155(5): 1104-1118.
|
9. |
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell, 2014, 31(6): 722-733.
|
10. |
Sturmlechner I, Durik M, Sieben CJ, et al. Cellular senescence in renal ageing and disease. Nat Rev Nephrol, 2017, 13(2): 77-89.
|
11. |
Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest, 2018, 128(4): 1238-1246.
|
12. |
Sis B, Tasanarong A, Khoshjou F, et al. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int, 2007, 71(3): 218-226.
|
13. |
Liu J, Yang JR, He YN, et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl Res, 2012, 159(6): 454-463.
|
14. |
Satriano J, Mansoury H, Deng A, et al. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am J Physiol Cell Physiol, 2010, 299(2): C374-380.
|
15. |
Luo C, Zhou S, Zhou Z, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol, 2018, 29(4): 1238-1256.
|
16. |
Liu J, Huang K, Cai GY, et al. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal, 2014, 26(1): 110-121.
|
17. |
Braun H, Schmidt BM, Raiss M, et al. Cellular senescence limits regenerative capacity and allograft survival. J Am Soc Nephrol, 2012, 23(9): 1467-1473.
|
18. |
Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis, 2013, 62(2): 339-351.
|
19. |
Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med, 2010, 16(5): 535-543.
|
20. |
Yu SM, Bonventre JV. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr Opin Nephrol Hypertens, 2020, 29(3): 310-318.
|
21. |
Gerhardt LMS, Liu J, Koppitch K, et al. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc Natl Acad Sci U S A, 2021, 118(27): e2026684118.
|
22. |
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell, 2019, 179(4): 813-827.
|
23. |
Lee DH, Wolstein JM, Pudasaini B, et al. INK4a deletion results in improved kidney regeneration and decreased capillary rarefaction after ischemia-reperfusion injury. Am J Physiol Renal Physiol, 2012, 302(1): F183-F191.
|
24. |
Jin H, Zhang Y, Ding Q, et al. Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight, 2019, 4(2): e125490.
|
25. |
Kim SR, Puranik AS, Jiang K, et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J Am Soc Nephrol, 2021, 32(8): 1987-2004.
|
26. |
Jiang X, Ruan XL, Xue YX, et al. Metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/miR-130a-3p/STAT3 pathway. Oxid Med Cell Longev, 2020, 2020: 8708236.
|
27. |
Lee SH, Lee JH, Lee HY, et al. Sirtuin signaling in cellular senescence and aging. BMB Rep, 2019, 52(1): 24-34.
|
28. |
Mogi M. Effect of renin-angiotensin system on senescence. Geriatr Gerontol Int, 2020, 20(6): 520-525.
|
29. |
Megyesi J, Safirstein RL, Price PM. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest, 1998, 101(4): 777-782.
|
30. |
Megyesi J, Andrade L, Vieira JM, et al. Positive effect of the induction of p21WAF1/CIP1 on the course of ischemic acute renal failure. Kidney Int, 2001, 60(6): 2164-2172.
|
31. |
Wolstein JM, Lee DH, Michaud J, et al. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol, 2010, 299(6): F1486-F1495.
|
32. |
Aldouahji M, Brugarolas J, Brown PA, et al. The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int, 1999, 56(5): 1691-1699.
|
33. |
Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479(7372): 232-236.
|
34. |
Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16 (Ink4a)-positive cells shorten healthy lifespan. Nature, 2016, 530(7589): 184-189.
|
35. |
Chen Z, Yu J, Fu M, et al. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol, 2020, 177: 113951.
|
36. |
Kim KM, Noh JH, Bodogai M, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev, 2017, 31(15): 1529-1534.
|
37. |
Sagiv A, Biran A, Yon M, et al. Granule exocytosis mediates immune surveillance of senescent cells. Oncogene, 2013, 32(15): 1971-1977.
|
38. |
Jia C, Ke-Hong C, Fei X, et al. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int, 2020, 98(3): 645-662.
|
39. |
Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med, 2016, 22(1): 78-83.
|
40. |
Yosef R, Pilpel N, Tokarsky-Amiel R, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun, 2016, 7: 11190.
|
41. |
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell, 2017, 169(1): 132-147.
|
42. |
Chen J, Chen KH, Wang LM, et al. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis, 2022, 13(6): 522.
|