1. |
Akshaya S, Rowlo PK, Dukle A, et al. Antibacterial coatings for titanium implants: recent trends and future perspectives. Antibiotics (Basel), 2022, 11(12): 1719.
|
2. |
Ren Y, Qin X, Barbeck M, et al. Mussel-inspired carboxymethyl chitosan hydrogel coating of titanium alloy with antibacterial and bioactive properties. Materials (Basel), 2021, 14(22): 6901.
|
3. |
Yu S, Jiang B, Jia C, et al. Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Ann Clin Microbiol Antimicrob, 2020, 19(1): 10.
|
4. |
Chua PH, Neoh KG, Kang ET, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008, 29(10): 1412-1421.
|
5. |
Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants. Biomaterials, 2013, 34(13): 3174-3183.
|
6. |
Manivasagam VK, Perumal G, Arora HS, et al. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface. J Biomed Mater Res A, 2022, 110(7): 1314-1328.
|
7. |
Benčina M, Resnik M, Starič P, et al. Use of plasma technologies for antibacterial surface properties of metals. Molecules, 2021, 26(5): 1418.
|
8. |
Zhang E, Zhao X, Hu J, et al. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater, 2021, 6(8): 2569-2612.
|
9. |
Jimenez E, Hamdan-Partida A, Padilla-Godinez FJ, et al. Spectroscopic analysis and microbicidal effect of Ag/TiO₂-SiO₂ bionanocatalysts. IEEE Trans Nanobioscience, 2022, 21(2): 246-255.
|
10. |
Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine, 2020, 15: 2555-2562.
|
11. |
Poon TKC, Iyengar KP, Jain VK. Silver nanoparticle (AgNP) technology applications in trauma and orthopaedics. J Clin Orthop Trauma, 2021, 21: 101536.
|
12. |
Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, 2011, 32(24): 5706-5716.
|
13. |
Cazzola M, Barberi J, Ferraris S, et al. Bioactive titanium surfaces enriched with silver nanoparticles through an in situ reduction: looking for a balance between cytocompatibility and antibacterial activity. Adv Eng Mater, 2022, 25: 2200883.
|
14. |
Gao C, Cheng H, Xu N, et al. Poly(dopamine) and Ag nanoparticle-loaded TiO2 nanotubes with optimized antibacterial and ROS-scavenging bioactivities. Nanomedicine (Lond), 2019, 14(7): 803-818.
|
15. |
Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater, 2019, 83: 37-54.
|
16. |
Aguilera-Correa JJ, Garcia-Casas A, Mediero A, et al. A new antibiotic-loaded sol-gel can prevent bacterial prosthetic joint infection: from in vitro studies to an in vivo model. Front Microbiol, 2020, 10: 2935.
|
17. |
Rams TE, Degener JE, van Winkelhoff AJ. Antibiotic resistance in human peri-implantitis microbiota. Clin Oral Implants Res, 2014, 25(1): 82-90.
|
18. |
Ghosh S, Rajesh K, Roy PP, et al. Multilayered porous hydroxyapatite coating on Ti6Al4V implant with enhanced drug delivery and antimicrobial properties. J Drug Deliv Sci Technol, 2022, 70: 103155.
|
19. |
Lv H, Chen Z, Yang X, et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent, 2014, 42(11): 1464-1472.
|
20. |
Zoghi N, Fouani MH, Bagheri H, et al. Characterization of minocycline loaded chitosan/polyethylene glycol/glycerol blend films as antibacterial wound dressings. J Appl Polym Sci, 2021, 138: e50781.
|
21. |
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013, 34(34): 8533-8554.
|
22. |
Zhu X, Tang W, Cheng X, et al. Roles of self-assembly and secondary structures in antimicrobial peptide coatings. Coatings, 2022, 12(10): 1456.
|
23. |
Moreno D, Buxadera-Palomero J, Ginebra MP, et al. Comparison of the antibacterial effect of silver nanoparticles and a multifunctional antimicrobial peptide on titanium surface. Int J Mol Sci, 2023, 24(11): 9739.
|
24. |
Kazemzadeh-Narbat M, Noordin S, Masri BA, et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater, 2012, 100(5): 1344-1352.
|
25. |
Zhou W, Bai T, Wang L, et al. Biomimetic AgNPs@ antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater, 2022, 20: 64-80.
|
26. |
Masimen MAA, Harun NA, Maulidiani M, et al. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics (Basel), 2022, 11(7): 951.
|
27. |
Zhu M, Liu X, Tan L, et al. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. J Hazard Mater, 2020, 383: 121122.
|
28. |
Tian Y, Qi Y, Fang Y, et al. Near-infrared light-responsive multifunctional photothermal/photodynamic titanium diboride nanocomposites for the treatment of antibiotic-resistant bacterial infections. ACS Appl Bio Mater, 2023, 6(7): 2837-2848.
|
29. |
Yang M, Qiu S, Coy E, et al. NIR-responsive TiO2 biometasurfaces: toward in situ photodynamic antibacterial therapy for biomedical implants. Adv Mater, 2022, 34(6): e2106314.
|
30. |
Hlabangwane K, Matshitse R, Managa M, et al. The application of Sn(Ⅳ)Cl2 and In(Ⅲ)Cl porphyrin-dyed TiO2 nanofibers in photodynamic antimicrobial chemotherapy for bacterial inactivation in water. Photodiagnosis Photodyn Ther, 2023, 44: 103795.
|
31. |
Vestby LK, Grønseth T, Simm R, et al. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel), 2020, 9(2): 59.
|
32. |
Bjarnsholt T, Buhlin K, Dufrêne YF, et al. Biofilm formation - what we can learn from recent developments. J Intern Med, 2018, 284(4): 332-345.
|
33. |
Guo G, Zhang H, Shen H, et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano, 2020, 14(10): 13391-13405.
|
34. |
Jiao Y, Tay FR, Niu LN, et al. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci, 2019, 11(3): 28.
|
35. |
Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev, 2020, 84(3): e00026-19.
|
36. |
Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol, 2017, 15(12): 740-755.
|
37. |
Kucharíková S, Gerits E, De Brucker K, et al. Covalent immobilization of antimicrobial agents on titanium prevents Staphylococcus aureus and Candida albicans colonization and biofilm formation. J Antimicrob Chemother, 2016, 71(4): 936-945.
|
38. |
Peeters E, Hooyberghs G, Robijns S, et al. An antibiofilm coating of 5-aryl-2-aminoimidazole covalently attached to a titanium surface. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1908-1919.
|
39. |
Coppola GA, Onsea J, Moriarty TF, et al. An improved 2-aminoimidazole based anti-biofilm coating for orthopedic implants: activity, stability, and in vivo biocompatibility. Front Microbiol, 2021, 12: 658521.
|
40. |
Beck S, Sehl C, Voortmann S, et al. Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro. J Mol Med (Berl), 2020, 98(2): 209-219.
|
41. |
Maia I, Carvalho O, Henriques, et al. Electrical potential approaches to inhibit biofilm adhesion on titanium implants. Mater Lett, 2019, 255: 126577.
|
42. |
Mao C, Zhu W, Xiang Y, et al. Enhanced near-infrared photocatalytic eradication of mrsa biofilms and osseointegration using oxide perovskite-based P-N heterojunction. Adv Sci (Weinh), 2021, 8(15): e2002211.
|
43. |
Han Q, Jiang Y, Brandt BW, et al. Regrowth of microcosm biofilms on titanium surfaces after various antimicrobial treatments. Front Microbiol, 2019, 10: 2693.
|
44. |
He X, Yamada M, Watanabe J, et al. Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration. Acta Biomater, 2022, 151: 613-627.
|
45. |
Wang S, Zhao X, Hsu Y, et al. Surface modification of titanium implants with Mg-containing coatings to promote osseointegration. Acta Biomater, 2023, 169: 19-44.
|
46. |
Sun Y, Zhao YQ, Zeng Q, et al. DDual-functional implants with antibacterial and osteointegration-promoting performances. ACS Appl Mater Interfaces, 2019, 11(40): 36449-36457.
|
47. |
Yang Z, Xi Y, Bai J, et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials, 2021, 269: 120534.
|
48. |
Meng F, Yin Z, Ren X, et al. Construction of local drug delivery system on titanium-based implants to improve osseointegration. Pharmaceutics, 2022, 14(5): 1069.
|
49. |
Watson GS, Green DW, Schwarzkopf L, et al. A gecko skin micro/nano structure - a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater, 2015, 21: 109-122.
|
50. |
Jiang R, Hao L, Song L, et al. Lotus-leaf-inspired non-fouling, mechanical bactericidal surfaces. Chem Eng J, 2020, 398: 125609.
|
51. |
Yuan Z, Tao B, He Y, et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials, 2019, 217: 119290.
|
52. |
Liu Y, Wu J, Zhang H, et al. Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties. Colloids Surf B Biointerfaces, 2021, 203: 111768.
|
53. |
Wang L, Dai F, Yang Y, et al. Zeolitic imidazolate framework-8 with encapsulated naringin synergistically improves antibacterial and osteogenic properties of Ti implants for osseointegration. ACS Biomater Sci Eng, 2022, 8(9): 3797-3809.
|
54. |
Wang Z, Wang X, Wang Y, et al. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology, 2021, 19(1): 353.
|
55. |
Chen D, Yu C, Ying Y, et al. Study of the osteoimmunomodulatory properties of curcumin-modified copper-bearing titanium. Molecules, 2022, 27(10): 3205.
|
56. |
Corrêa MG, Pimentel SP, Ribeiro FV, et al. Host response and peri-implantitis. Braz Oral Res, 2019, 33(suppl 1): e066.
|
57. |
Chae K, Jang WY, Park K, et al. Antibacterial infection and immune-evasive coating for orthopedic implants. Sci Adv, 2020, 6(44): eabb0025.
|
58. |
Villegas M, Zhang Y, Badv M, et al. Enhancing osseointegration and mitigating bacterial biofilms on medical-grade titanium with chitosan-conjugated liquid-infused coatings. Sci Rep, 2022, 12(1): 5380.
|
59. |
Horwood NJ. Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol, 2016, 51(1): 79-86.
|
60. |
Xue, Y, Zhang, L, Liu, F, et al. Immunomodulation and osteointegration of infected implants by ion-riched and hierarchical porous TiO2 matrix. Nano Res, 2022, 16: 2905-2914.
|