- 1. Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China;
- 2. General Surgery Department, the second People’s Hospital of Pengzhou, Pengzhou, Sichuan 611934, P. R. China;
- 3. School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China;
MicroRNA-92a (miR-92a) is an evolutionarily highly conserved pathogenic microRNA that is a member of the microRNA-17-92 gene cluster and is involved in the regulation of biological activities such as cell proliferation, apoptosis and differentiation. Recent studies have revealed that disorders of miR-92a expression are associated with disease development and exert pathogenic effects mainly through the regulation of target genes or target proteins. The current research related to miR-92a is mainly focused on malignant tumors, and its high expression has been found to be associated with cancer cell malignancy and reduced sensitivity of tumors to radiotherapy. miR-92a targeting target genes or target proteins to cause disease and its relationship with radiotherapy has been a hot research topic in recent years. Based on this, This article reviews the latest research on miR-92a target gene or target protein pathogenesis and its impact on chemotherapy in order to provide targets for clinical disease treatment.
Citation: GAO Ziping, LIANG Weidong, CHEN Hu, SI Yingli, YANG Bo. Research progress of miR-92a and target genes. West China Medical Journal, 2023, 38(6): 930-937. doi: 10.7507/1002-0179.202208158 Copy
1. | 邹仁超, 王剑松, 王海峰. 微小 RNA-92a 在相关疾病发病机制中的研究进展. 医学与哲学 (B), 2016, 37(4): 58-60, 70. |
2. | Alcantara KMM, Garcia RL. MicroRNA-92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. Oncol Rep, 2019, 41(4): 2103-2116. |
3. | Lu F, Ye Y, Zhang H, et al. miR-497/Wnt3a/c-jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells. Int J Biol Macromol, 2018, 120 (Pt A): 985-991. |
4. | Sun D, Mu Y, Piao H. MicroRNA-153-3p enhances cell radiosensitivity by targeting BCL2 in human glioma. Biol Res, 2018, 51(1): 56. |
5. | Xu Y, Liu R, Liao C, et al. High expression of immunity-related GTPase family M protein in glioma promotes cell proliferation and autophagy protein expression. Pathol Res Pract, 2019, 215(1): 90-96. |
6. | Zhang H, Cao H, Xu D, et al. MicroRNA-92a promotes metastasis of nasopharyngeal carcinoma by targeting the PTEN/AKT pathway. Onco Targets Ther, 2016, 9: 3579-3588. |
7. | 龙彩云. miR-92a-2-5p/PRKCA/β-catenin 在 ETU 诱导的肛门直肠畸形胎鼠中作用的研究. 辽宁: 中国医科大学, 2019. |
8. | 胡爱妮, 王豫萍, 路毅斌, 等. miR-92a 靶向 PTEN/PI3K/Akt 通路抑制非小细胞肺癌细胞的自噬. 第三军医大学学报, 2020, 42(13): 1301-1307. |
9. | 李利发. MiR-92a 通过激活 Wnt/β-catenin 信号通路促进结直肠癌干细胞样特性. 南充: 川北医学院, 2017. |
10. | Yang C, Pan Y. Fluoroururacil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumour Biol, 2016, 37: 15489-15494. |
11. | Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233. |
12. | Ren P, Gong F, Zhang Y, et al. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol, 2016, 37(3): 3215-3225. |
13. | 王生. miR-21、miR-31、miR-92a 及 Let-7 对非小细胞肺癌的诊断价值及机制研究. 郑州: 郑州大学, 2018. |
14. | Li X, Guo S, Min L, et al. miR-92a-3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN. Int J Mol Med, 2019, 44(3): 973-981. |
15. | 刘宇, 胡庆, 敖晶晶, 等. 微小 RNA-92a-3p 靶向 PTEN 调控胰腺癌细胞增殖和转移. 中南大学学报(医学版), 2020, 45(3): 280-289. |
16. | Bai Y, Wang YL, Yao WJ, et al. Expression of miR-32 in human non-small cell lung cancer and its correlation with tumor progression and patient survival. Int J Clin Exp Pathol, 2015, 8(1): 824-829. |
17. | He Z, Liao Z, Chen S, et al. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol, 2018, 14(5): e259-e265. |
18. | Wang Y, Tian Y, Li Z, et al. miR-92 regulates the proliferation, migration, invasion and apoptosis of glioma cells by targeting neogenin. Open Med (Wars), 2020, 15: 283-291. |
19. | Liao C, Chen W, Wang J. MicroRNA-20a regulates glioma cell proliferation, invasion, and apoptosis by targeting CUGBP elav-like family member 2. World Neurosurg, 2019, 121: e519-e527. |
20. | Li J, Li Q, Lin L, et al. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT). BMC Neurol, 2018, 18(1): 133. |
21. | Li P, Xue WJ, Feng Y, et al. MicroRNA-205 functions as a tumor suppressor in colorectal cancer by targeting cAMP responsive element binding protein 1 (CREB1). Am J Transl Res, 2015, 7(10): 2053-2059. |
22. | Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854. |
23. | Li M, Guan X, Sun Y, et al. miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res, 2014, 323(1): 1-6. |
24. | Lee SY, Yang J, Park JH, et al. The microRNA-92a/Sp1/MyoD axis regulates hypoxic stimulation of myogenic lineage differentiation in mouse embryonic stem cells. Mol Ther, 2020, 28(1): 142-156. |
25. | Zhang G, Li S, Lu J, et al. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol Cancer, 2018, 17(1): 87. |
26. | Yamada NO, Senda T. Circulating microRNA-92a-3p in colorectal cancer: a review. Med Mol Morphol, 2021, 54(3): 193-202. |
27. | Li Y, Guo R, Deng C, et al. A prussian blue nanoparticles-based fluorescent nanoprobe for monitoring microRNA-92a and microRNA-21. Anal Sci, 2021, 38(3): 497-504. |
28. | Di R, Fan Y, He X, et al. Epigenetic regulation of miR-25 and Lnc107153 on expression of seasonal estrus key gene CHGA in sheep. Biology (Basel), 2023, 12(2): 250. |
29. | Shen Z, Yu Y, Yang Y, et al. miR-25 and miR-92b regulate insulin biosynthesis and pancreatic β-cell apoptosis. Endocrine, 2022, 76(3): 526-535. |
30. | Guo B, Tian Z. Mir-25 promotes metastasis of esophageal cancer by targeting BTG2. Appl Biochem Biotechnol, 2022: 1-14. |
31. | Tsai YC, Kuo MC, Hung WW, et al. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer. Cell Commun Signal, 2023, 21(1): 10. |
32. | Landais S, Landry S, Legault P, et al. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res, 2007, 67(12): 5699-5707. |
33. | Yu M, Sun Y, Shan X, et al. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett, 2022, 27(1): 85. |
34. | Nai M, Zhang Y, Li L, et al. Effects of miR-363 on the biological activities of eutopic endometrial stromal cells in endometriosis. Biomed Res Int, 2022, 2022: 7663379. |
35. | Zhuang W, Liu H, He Z, et al. miR-92a-2-5p regulates the proliferation and differentiation of ASD-derived neural progenitor cells. Curr Issues Mol Biol, 2022, 44(6): 2431-2442. |
36. | Zhu J, Xu Z, Wu P, et al. MicroRNA-92a-3p inhibits cell proliferation and invasion by regulating the transcription factor 21/steroidogenic factor 1 axis in endometriosis. Reprod Sci, 2023, 17: 1-10. |
37. | Binderup HG, Houlind K, Madsen JS, et al. Aspirin resistance may be identified by miR-92a in plasma combined with platelet distribution width. Clin Biochem, 2016, 49(15): 1167-1172. |
38. | Ma K, Li X, Hu H, et al. Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol, 2017, 203: 20-24. |
39. | Tsuchida A, Ohno S, Wu W, et al. miR-92a is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci, 2011, 102(12): 2264-2271. |
40. | Chen ZL, Zhao XH, Wang JW, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem, 2011, 286(12): 10725-10734. |
41. | Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res, 2004, 64(9): 3087-3095. |
42. | Rinaldi A, Poretti G, Kwee I, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma, 2007, 48(2): 410-412. |
43. | Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J, 2012, 18(3): 262-267. |
44. | Fujiwara M, Raheja R, Garo LP, et al. microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest, 2022, 132(10): e155693. |
45. | Wang C, Li YH, Yang ZT, et al. The function and mechanism of microRNA-92a-3p in lipopolysaccharide-induced acute lung injury. Immunopharmacol Immunotoxicol, 2022, 44(1): 47-57. |
46. | Wang Y, Li L, Zhang X, et al. Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augment proliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res, 2022, 15(1): 25. |
47. | Cui J, Zhou B, Ross SA, et al. Nutrition, microRNAs, and human health. Adv Nutr, 2017, 8(1): 105-112. |
48. | 褚薇薇. miR-92a 对大鼠肝缺血再灌注损伤的抗细胞凋亡作用. 基因组学与应用生物学, 2019, 38(12): 5633-5638. |
49. | Zhao B, Zhu Y, Cui K, et al. Expression and significance of PTEN and miR-92 in hepatocellular carcinoma. Mol Med Rep, 2013, 7(5): 1413-1416. |
50. | 陈丽娟, 陈建琴, 张浩伟, 等. miRNA-92 在妇科肿瘤中的研究进展. 中国妇幼保健, 2015, 30(16): 2684-2686. |
51. | 陈晨, 李晶, 叶婷, 等. 2 型糖尿病肾病患者血清 miR-92b-5p 和 HMGB1 水平变化及临床意义. 山东医药, 2021, 61(16): 6-10. |
52. | 崔亚萌, 王文一, 王小飞, 等. 循环 miR-92a 在稳定型冠心病合并 2 型糖尿病血瘀证中的表达. 中西医结合心脑血管病杂志, 2016, 14(8): 817-820. |
53. | 周何. microRNA-92a 调控 PTEN 表达影响结直肠癌增殖、侵袭和转移的机制研究. 南充: 川北医学院学报, 2016. |
54. | Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 2008, 132(5): 875-886. |
55. | Suárez Y, Fernández-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A, 2008, 105(37): 14082-14087. |
56. | Costa C, Wang Y, Ly A. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov, 2020, 10(1): 72-85. |
57. | Wang L, Cho YL, Tang Y, et al. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy. Cell Res, 2018, 28(8): 787-802. |
58. | Xing Y, Lin NU, Maurer MA, et al. PhaseⅡtrial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT muta-tions, and/or PTEN loss/PTEN mutation. Breast Cancer Res, 2019, 21(1): 78. |
59. | Haddadi N, Lin Y, Travis G, et al. PTEN/ PTENP1: ‘Regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer, 2018, 17(1): 37. |
60. | Li M, Peng J, Shi Y, et al. miR-92a promotes progesterone resistance in endometriosis through PTEN/AKT pathway. Life Sci, 2020, 242: 117190. |
61. | Hashemi M, Etemad S, Rezaei S, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions. Biomed Pharmacother, 2023, 158: 114204. |
62. | Fu L, Zhu P, Qi S, et al. MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway. Biomed Pharmacother, 2018, 107: 703-711. |
63. | Clevers H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3): 469-480. |
64. | MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009, 17(1): 9-26. |
65. | Basu S, Haase G, Ben-Ze’ev A. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res, 2016(5): F1000 Faculty Rev-699. |
66. | Gedaly R, Galuppo R, Daily MF, et al. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One, 2014, 9(6): e99272. |
67. | Zhang GJ, Li LF, Yang GD, et al. MiR-92a promotes stem cell-like properties by activating Wnt/β-catenin signaling in colorectal cancer. Oncotarget, 2017, 8(60): 101760-101770. |
68. | Zheng TL, Cen K. MiR-92a inhibits proliferation and promotes apoptosis of OSCC cells through Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci, 2020, 24(9): 4803-4809. |
69. | Cheng J, Song Q, Yang Y, et al. Lipolysis by downregulating miR-92a activates the Wnt/β-catenin signaling pathway in hypoxic rats. Biomed Rep, 2020, 13(4): 33. |
70. | Lv H, Zhang Z, Wang Y, et al. MicroRNA-92a promotes colorectal cancer cell growth and migration by inhibiting KLF4. Oncol Res, 2016, 23(6): 283-290. |
71. | Ling L, Wang HF, Li J, et al. Downregulated microRNA-92a-3p inhibits apoptosis and promotes proliferation of pancreatic acinar cells in acute pancreatitis by enhancing KLF2 expression. J Cell Biochem, 2020, 121(8/9): 3739-3751. |
72. | Autieri MV. Kruppel-like factor 4: transcriptional regulator of proliferation, or inflammation, or differentiation, or all three?. Circ Res, 2008, 102(12): 1455-1457. |
73. | Tang W, Zhu Y, Gao J, et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer, 2014, 110(2): 450-458. |
74. | Jha P, Das H. KLF2 in regulation of NF‐κB‐mediated immune cell function and inflammation. Int J Mol Sci, 2017, 18(11): 2383. |
75. | Wu Q, Wang H, He F, et al. Depletion of microRNA-92a enhances the role of sevoflurane treatment in reducing myocardial ischemia-reperfusion injury by upregulating KLF4. Cardiovasc Drugs Ther, 2022: 1-12. |
76. | Lin CM, Wang BW, Pan CM, et al. Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. Eur J Nutr, 2021, 60(8): 4345-4355. |
77. | Mao QQ, Chen JJ, Xu WJ, et al. miR-92a-3p promotes the proliferation and invasion of gastric cancer cells by targeting KLF2. J Biol Regul Homeost Agents, 2020, 34(4): 1333-1341. |
78. | Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46(5): 705-716. |
79. | Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer, 2013, 12: 86. |
80. | Ding E, Guo J, Bai Y, et al. MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-κB activity in mercury toxicity. Sci Rep, 2017, 7(1): 15980. |
81. | Wang WY, Zheng YS, Li ZG, et al. MiR-92a contributes to the cardiovascular disease development in diabetes mellitus through NF-κB and downstream inflammatory pathways. Eur Rev Med Pharmacol Sci, 2019, 23(7): 3070-3079. |
82. | Qiu B, Sun Y, Nie W, et al. FBXW7 promotes autophagy and inhibits proliferation of oral squamous cell carcinoma. Immun Inflamm Dis, 2023, 11(5): e845. |
83. | Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res, 2007, 67(19): 9006-9012. |
84. | Ni D, Teng J, Cheng Y, et al. MicroRNA-92a promotes non-small cell lung cancer cell growth by targeting tumor suppressor gene FBXW7. Mol Med Rep, 2020, 22(4): 2817-2825. |
85. | Yang W, Dou C, Wang Y, et al. MicroRNA-92a contributes to tumor growth of human hepatocellular carcinoma by targeting FBXW7. Oncol Rep, 2015, 34(5): 2576-2584. |
86. | Wu Q, Wu W, Fu B. JNK signaling in cancer cell survival. Med Res Rev, 2019, 39(6): 2082-2104. |
87. | Kumar A, Singh UK, Kini SG, et al. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem, 2015, 15(7): 2065-2086. |
88. | Zhang L, Zhou M, Wang Y, et al. miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4-JNK pathway. Apoptosis, 2014, 19(6): 975-983. |
89. | He G, Zhang L, Li Q, et al. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed Pharmacother, 2014, 68(1): 25-30. |
90. | Wang Z, Liu L, Du Y, et al. The HNF1A-AS1/miR-92a-3p axis affects the radiosensitivity of non-small cell lung cancer by competitively regulating the JNK pathway. Cell Biol Toxicol, 2021, 37(5): 715-729. |
91. | Heist RS, Mino-Kenudson M, Sequist LV, et al. FGFR1 amplifiction in squamous cell carcinoma of the lung. J Thorac Oncol, 2012, 7(12): 1775-1780. |
92. | Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p. J Extracell Vesicles, 2021, 10(3): e12056. |
93. | Romero M, Gapihan G, Castro-Vega LJ, et al. Primary mediastinal large B-cell lymphoma: transcriptional regulation by miR-92a through FOXP1 targeting. Oncotarget, 2017, 8(10): 16243-16258. |
94. | Dai J, Ma B, Wen X, et al. Upregulation of miR-92a contributes to blocking goblet cell metaplasia by targeting MUC5AC in asthma. J Recept Signal Transduct Res, 2020, 40(6): 613-619. |
95. | Wu YZ, Sun J, Zhang Y, et al. Effective integration of targeted tumor imaging and therapy using functionalized InP QDs with VEGFR2 monoclonal antibody and miR-92a inhibitor. ACS Appl Mater Interfaces, 2017, 9(15): 13068-13078. |
96. | Li L, Zhang J, Peng H, et al. Knockdown of miR-92a suppresses the stemness of colorectal cancer cells via mediating SOCS3. Bioengineered, 2022, 13(3): 5613-5624. |
97. | Gong J, He L, Ma J, et al. The relationship between miR-17-5p, miR-92a, and let-7b expression with non-small cell lung cancer targeted drug resistance. J BUON, 2017, 22(2): 454-461. |
98. | Mitchell PS, Parkin RK, Kroh EM. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518. |
99. | Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008, 18(10): 997-1006. |
100. | Lin S, Pan L, Guo S, et al. Prognostic role of microRNA-181a/b in hematological malignancies: a meta-analysis. PLoS One, 2013, 8(3): e59532. |
101. | Yanshen Z, Lifen Y, Xilian W, et al. miR-92a promotes proliferation and inhibits apoptosis of prostate cancer cells through the PTEN/Akt signaling pathway. Libyan J Med, 2021, 16(1): 1971837. |
102. | Luo S, Li N, Yu S, et al. MicroRNA-92a promotes cell viability and invasion in cervical cancer via directly targeting Dickkopf-related protein 3. Exp Ther Med, 2017, 14(2): 1227-1234. |
103. | Sheng Y, Wang Y, Lu W, et al. MicroRNA-92a inhibits macrophage antiviral response by targeting retinoic acid inducible gene-I. Microbiol Immunol, 2018, 62(9): 585-593. |
104. | Si H, Sun X, Chen Y, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol, 2013, 139(2): 223-229. |
- 1. 邹仁超, 王剑松, 王海峰. 微小 RNA-92a 在相关疾病发病机制中的研究进展. 医学与哲学 (B), 2016, 37(4): 58-60, 70.
- 2. Alcantara KMM, Garcia RL. MicroRNA-92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. Oncol Rep, 2019, 41(4): 2103-2116.
- 3. Lu F, Ye Y, Zhang H, et al. miR-497/Wnt3a/c-jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells. Int J Biol Macromol, 2018, 120 (Pt A): 985-991.
- 4. Sun D, Mu Y, Piao H. MicroRNA-153-3p enhances cell radiosensitivity by targeting BCL2 in human glioma. Biol Res, 2018, 51(1): 56.
- 5. Xu Y, Liu R, Liao C, et al. High expression of immunity-related GTPase family M protein in glioma promotes cell proliferation and autophagy protein expression. Pathol Res Pract, 2019, 215(1): 90-96.
- 6. Zhang H, Cao H, Xu D, et al. MicroRNA-92a promotes metastasis of nasopharyngeal carcinoma by targeting the PTEN/AKT pathway. Onco Targets Ther, 2016, 9: 3579-3588.
- 7. 龙彩云. miR-92a-2-5p/PRKCA/β-catenin 在 ETU 诱导的肛门直肠畸形胎鼠中作用的研究. 辽宁: 中国医科大学, 2019.
- 8. 胡爱妮, 王豫萍, 路毅斌, 等. miR-92a 靶向 PTEN/PI3K/Akt 通路抑制非小细胞肺癌细胞的自噬. 第三军医大学学报, 2020, 42(13): 1301-1307.
- 9. 李利发. MiR-92a 通过激活 Wnt/β-catenin 信号通路促进结直肠癌干细胞样特性. 南充: 川北医学院, 2017.
- 10. Yang C, Pan Y. Fluoroururacil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumour Biol, 2016, 37: 15489-15494.
- 11. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
- 12. Ren P, Gong F, Zhang Y, et al. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol, 2016, 37(3): 3215-3225.
- 13. 王生. miR-21、miR-31、miR-92a 及 Let-7 对非小细胞肺癌的诊断价值及机制研究. 郑州: 郑州大学, 2018.
- 14. Li X, Guo S, Min L, et al. miR-92a-3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN. Int J Mol Med, 2019, 44(3): 973-981.
- 15. 刘宇, 胡庆, 敖晶晶, 等. 微小 RNA-92a-3p 靶向 PTEN 调控胰腺癌细胞增殖和转移. 中南大学学报(医学版), 2020, 45(3): 280-289.
- 16. Bai Y, Wang YL, Yao WJ, et al. Expression of miR-32 in human non-small cell lung cancer and its correlation with tumor progression and patient survival. Int J Clin Exp Pathol, 2015, 8(1): 824-829.
- 17. He Z, Liao Z, Chen S, et al. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol, 2018, 14(5): e259-e265.
- 18. Wang Y, Tian Y, Li Z, et al. miR-92 regulates the proliferation, migration, invasion and apoptosis of glioma cells by targeting neogenin. Open Med (Wars), 2020, 15: 283-291.
- 19. Liao C, Chen W, Wang J. MicroRNA-20a regulates glioma cell proliferation, invasion, and apoptosis by targeting CUGBP elav-like family member 2. World Neurosurg, 2019, 121: e519-e527.
- 20. Li J, Li Q, Lin L, et al. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT). BMC Neurol, 2018, 18(1): 133.
- 21. Li P, Xue WJ, Feng Y, et al. MicroRNA-205 functions as a tumor suppressor in colorectal cancer by targeting cAMP responsive element binding protein 1 (CREB1). Am J Transl Res, 2015, 7(10): 2053-2059.
- 22. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.
- 23. Li M, Guan X, Sun Y, et al. miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res, 2014, 323(1): 1-6.
- 24. Lee SY, Yang J, Park JH, et al. The microRNA-92a/Sp1/MyoD axis regulates hypoxic stimulation of myogenic lineage differentiation in mouse embryonic stem cells. Mol Ther, 2020, 28(1): 142-156.
- 25. Zhang G, Li S, Lu J, et al. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol Cancer, 2018, 17(1): 87.
- 26. Yamada NO, Senda T. Circulating microRNA-92a-3p in colorectal cancer: a review. Med Mol Morphol, 2021, 54(3): 193-202.
- 27. Li Y, Guo R, Deng C, et al. A prussian blue nanoparticles-based fluorescent nanoprobe for monitoring microRNA-92a and microRNA-21. Anal Sci, 2021, 38(3): 497-504.
- 28. Di R, Fan Y, He X, et al. Epigenetic regulation of miR-25 and Lnc107153 on expression of seasonal estrus key gene CHGA in sheep. Biology (Basel), 2023, 12(2): 250.
- 29. Shen Z, Yu Y, Yang Y, et al. miR-25 and miR-92b regulate insulin biosynthesis and pancreatic β-cell apoptosis. Endocrine, 2022, 76(3): 526-535.
- 30. Guo B, Tian Z. Mir-25 promotes metastasis of esophageal cancer by targeting BTG2. Appl Biochem Biotechnol, 2022: 1-14.
- 31. Tsai YC, Kuo MC, Hung WW, et al. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer. Cell Commun Signal, 2023, 21(1): 10.
- 32. Landais S, Landry S, Legault P, et al. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res, 2007, 67(12): 5699-5707.
- 33. Yu M, Sun Y, Shan X, et al. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett, 2022, 27(1): 85.
- 34. Nai M, Zhang Y, Li L, et al. Effects of miR-363 on the biological activities of eutopic endometrial stromal cells in endometriosis. Biomed Res Int, 2022, 2022: 7663379.
- 35. Zhuang W, Liu H, He Z, et al. miR-92a-2-5p regulates the proliferation and differentiation of ASD-derived neural progenitor cells. Curr Issues Mol Biol, 2022, 44(6): 2431-2442.
- 36. Zhu J, Xu Z, Wu P, et al. MicroRNA-92a-3p inhibits cell proliferation and invasion by regulating the transcription factor 21/steroidogenic factor 1 axis in endometriosis. Reprod Sci, 2023, 17: 1-10.
- 37. Binderup HG, Houlind K, Madsen JS, et al. Aspirin resistance may be identified by miR-92a in plasma combined with platelet distribution width. Clin Biochem, 2016, 49(15): 1167-1172.
- 38. Ma K, Li X, Hu H, et al. Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol, 2017, 203: 20-24.
- 39. Tsuchida A, Ohno S, Wu W, et al. miR-92a is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci, 2011, 102(12): 2264-2271.
- 40. Chen ZL, Zhao XH, Wang JW, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem, 2011, 286(12): 10725-10734.
- 41. Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res, 2004, 64(9): 3087-3095.
- 42. Rinaldi A, Poretti G, Kwee I, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma, 2007, 48(2): 410-412.
- 43. Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J, 2012, 18(3): 262-267.
- 44. Fujiwara M, Raheja R, Garo LP, et al. microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest, 2022, 132(10): e155693.
- 45. Wang C, Li YH, Yang ZT, et al. The function and mechanism of microRNA-92a-3p in lipopolysaccharide-induced acute lung injury. Immunopharmacol Immunotoxicol, 2022, 44(1): 47-57.
- 46. Wang Y, Li L, Zhang X, et al. Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augment proliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res, 2022, 15(1): 25.
- 47. Cui J, Zhou B, Ross SA, et al. Nutrition, microRNAs, and human health. Adv Nutr, 2017, 8(1): 105-112.
- 48. 褚薇薇. miR-92a 对大鼠肝缺血再灌注损伤的抗细胞凋亡作用. 基因组学与应用生物学, 2019, 38(12): 5633-5638.
- 49. Zhao B, Zhu Y, Cui K, et al. Expression and significance of PTEN and miR-92 in hepatocellular carcinoma. Mol Med Rep, 2013, 7(5): 1413-1416.
- 50. 陈丽娟, 陈建琴, 张浩伟, 等. miRNA-92 在妇科肿瘤中的研究进展. 中国妇幼保健, 2015, 30(16): 2684-2686.
- 51. 陈晨, 李晶, 叶婷, 等. 2 型糖尿病肾病患者血清 miR-92b-5p 和 HMGB1 水平变化及临床意义. 山东医药, 2021, 61(16): 6-10.
- 52. 崔亚萌, 王文一, 王小飞, 等. 循环 miR-92a 在稳定型冠心病合并 2 型糖尿病血瘀证中的表达. 中西医结合心脑血管病杂志, 2016, 14(8): 817-820.
- 53. 周何. microRNA-92a 调控 PTEN 表达影响结直肠癌增殖、侵袭和转移的机制研究. 南充: 川北医学院学报, 2016.
- 54. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 2008, 132(5): 875-886.
- 55. Suárez Y, Fernández-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A, 2008, 105(37): 14082-14087.
- 56. Costa C, Wang Y, Ly A. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov, 2020, 10(1): 72-85.
- 57. Wang L, Cho YL, Tang Y, et al. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy. Cell Res, 2018, 28(8): 787-802.
- 58. Xing Y, Lin NU, Maurer MA, et al. PhaseⅡtrial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT muta-tions, and/or PTEN loss/PTEN mutation. Breast Cancer Res, 2019, 21(1): 78.
- 59. Haddadi N, Lin Y, Travis G, et al. PTEN/ PTENP1: ‘Regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer, 2018, 17(1): 37.
- 60. Li M, Peng J, Shi Y, et al. miR-92a promotes progesterone resistance in endometriosis through PTEN/AKT pathway. Life Sci, 2020, 242: 117190.
- 61. Hashemi M, Etemad S, Rezaei S, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions. Biomed Pharmacother, 2023, 158: 114204.
- 62. Fu L, Zhu P, Qi S, et al. MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway. Biomed Pharmacother, 2018, 107: 703-711.
- 63. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3): 469-480.
- 64. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009, 17(1): 9-26.
- 65. Basu S, Haase G, Ben-Ze’ev A. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res, 2016(5): F1000 Faculty Rev-699.
- 66. Gedaly R, Galuppo R, Daily MF, et al. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One, 2014, 9(6): e99272.
- 67. Zhang GJ, Li LF, Yang GD, et al. MiR-92a promotes stem cell-like properties by activating Wnt/β-catenin signaling in colorectal cancer. Oncotarget, 2017, 8(60): 101760-101770.
- 68. Zheng TL, Cen K. MiR-92a inhibits proliferation and promotes apoptosis of OSCC cells through Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci, 2020, 24(9): 4803-4809.
- 69. Cheng J, Song Q, Yang Y, et al. Lipolysis by downregulating miR-92a activates the Wnt/β-catenin signaling pathway in hypoxic rats. Biomed Rep, 2020, 13(4): 33.
- 70. Lv H, Zhang Z, Wang Y, et al. MicroRNA-92a promotes colorectal cancer cell growth and migration by inhibiting KLF4. Oncol Res, 2016, 23(6): 283-290.
- 71. Ling L, Wang HF, Li J, et al. Downregulated microRNA-92a-3p inhibits apoptosis and promotes proliferation of pancreatic acinar cells in acute pancreatitis by enhancing KLF2 expression. J Cell Biochem, 2020, 121(8/9): 3739-3751.
- 72. Autieri MV. Kruppel-like factor 4: transcriptional regulator of proliferation, or inflammation, or differentiation, or all three?. Circ Res, 2008, 102(12): 1455-1457.
- 73. Tang W, Zhu Y, Gao J, et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer, 2014, 110(2): 450-458.
- 74. Jha P, Das H. KLF2 in regulation of NF‐κB‐mediated immune cell function and inflammation. Int J Mol Sci, 2017, 18(11): 2383.
- 75. Wu Q, Wang H, He F, et al. Depletion of microRNA-92a enhances the role of sevoflurane treatment in reducing myocardial ischemia-reperfusion injury by upregulating KLF4. Cardiovasc Drugs Ther, 2022: 1-12.
- 76. Lin CM, Wang BW, Pan CM, et al. Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. Eur J Nutr, 2021, 60(8): 4345-4355.
- 77. Mao QQ, Chen JJ, Xu WJ, et al. miR-92a-3p promotes the proliferation and invasion of gastric cancer cells by targeting KLF2. J Biol Regul Homeost Agents, 2020, 34(4): 1333-1341.
- 78. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46(5): 705-716.
- 79. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer, 2013, 12: 86.
- 80. Ding E, Guo J, Bai Y, et al. MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-κB activity in mercury toxicity. Sci Rep, 2017, 7(1): 15980.
- 81. Wang WY, Zheng YS, Li ZG, et al. MiR-92a contributes to the cardiovascular disease development in diabetes mellitus through NF-κB and downstream inflammatory pathways. Eur Rev Med Pharmacol Sci, 2019, 23(7): 3070-3079.
- 82. Qiu B, Sun Y, Nie W, et al. FBXW7 promotes autophagy and inhibits proliferation of oral squamous cell carcinoma. Immun Inflamm Dis, 2023, 11(5): e845.
- 83. Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res, 2007, 67(19): 9006-9012.
- 84. Ni D, Teng J, Cheng Y, et al. MicroRNA-92a promotes non-small cell lung cancer cell growth by targeting tumor suppressor gene FBXW7. Mol Med Rep, 2020, 22(4): 2817-2825.
- 85. Yang W, Dou C, Wang Y, et al. MicroRNA-92a contributes to tumor growth of human hepatocellular carcinoma by targeting FBXW7. Oncol Rep, 2015, 34(5): 2576-2584.
- 86. Wu Q, Wu W, Fu B. JNK signaling in cancer cell survival. Med Res Rev, 2019, 39(6): 2082-2104.
- 87. Kumar A, Singh UK, Kini SG, et al. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem, 2015, 15(7): 2065-2086.
- 88. Zhang L, Zhou M, Wang Y, et al. miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4-JNK pathway. Apoptosis, 2014, 19(6): 975-983.
- 89. He G, Zhang L, Li Q, et al. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed Pharmacother, 2014, 68(1): 25-30.
- 90. Wang Z, Liu L, Du Y, et al. The HNF1A-AS1/miR-92a-3p axis affects the radiosensitivity of non-small cell lung cancer by competitively regulating the JNK pathway. Cell Biol Toxicol, 2021, 37(5): 715-729.
- 91. Heist RS, Mino-Kenudson M, Sequist LV, et al. FGFR1 amplifiction in squamous cell carcinoma of the lung. J Thorac Oncol, 2012, 7(12): 1775-1780.
- 92. Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p. J Extracell Vesicles, 2021, 10(3): e12056.
- 93. Romero M, Gapihan G, Castro-Vega LJ, et al. Primary mediastinal large B-cell lymphoma: transcriptional regulation by miR-92a through FOXP1 targeting. Oncotarget, 2017, 8(10): 16243-16258.
- 94. Dai J, Ma B, Wen X, et al. Upregulation of miR-92a contributes to blocking goblet cell metaplasia by targeting MUC5AC in asthma. J Recept Signal Transduct Res, 2020, 40(6): 613-619.
- 95. Wu YZ, Sun J, Zhang Y, et al. Effective integration of targeted tumor imaging and therapy using functionalized InP QDs with VEGFR2 monoclonal antibody and miR-92a inhibitor. ACS Appl Mater Interfaces, 2017, 9(15): 13068-13078.
- 96. Li L, Zhang J, Peng H, et al. Knockdown of miR-92a suppresses the stemness of colorectal cancer cells via mediating SOCS3. Bioengineered, 2022, 13(3): 5613-5624.
- 97. Gong J, He L, Ma J, et al. The relationship between miR-17-5p, miR-92a, and let-7b expression with non-small cell lung cancer targeted drug resistance. J BUON, 2017, 22(2): 454-461.
- 98. Mitchell PS, Parkin RK, Kroh EM. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518.
- 99. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008, 18(10): 997-1006.
- 100. Lin S, Pan L, Guo S, et al. Prognostic role of microRNA-181a/b in hematological malignancies: a meta-analysis. PLoS One, 2013, 8(3): e59532.
- 101. Yanshen Z, Lifen Y, Xilian W, et al. miR-92a promotes proliferation and inhibits apoptosis of prostate cancer cells through the PTEN/Akt signaling pathway. Libyan J Med, 2021, 16(1): 1971837.
- 102. Luo S, Li N, Yu S, et al. MicroRNA-92a promotes cell viability and invasion in cervical cancer via directly targeting Dickkopf-related protein 3. Exp Ther Med, 2017, 14(2): 1227-1234.
- 103. Sheng Y, Wang Y, Lu W, et al. MicroRNA-92a inhibits macrophage antiviral response by targeting retinoic acid inducible gene-I. Microbiol Immunol, 2018, 62(9): 585-593.
- 104. Si H, Sun X, Chen Y, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol, 2013, 139(2): 223-229.