1. |
Gianotti SM, Marshall SW, Hume PA, et al. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport, 2009, 12(6): 622-627.
|
2. |
Boden BP, Griffin LY, Garrett WE. Etiology and prevention of noncontact ACL injury. Phys Sportsmed, 2000, 28(4): 53-60.
|
3. |
韩广弢, 李皓桓, 高冯. 创伤后膝骨关节炎发展中前交叉韧带损伤的作用与意义. 中国组织工程研究, 2020, 24(15): 2440-2446.
|
4. |
Vasta S, Andrade R, Pereira R, et al. Bone morphology and morphometry of the lateral femoral condyle is a risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc, 2018, 26(9): 2817-2825.
|
5. |
Gupta R, Jhatiwal S, Kapoor A, et al. Narrow notch width and low anterior cruciate ligament volume are risk factors for anterior cruciate ligament injury: a magnetic resonance imaging-based study. HSS J, 2022, 18(3): 376-384.
|
6. |
Kutaish H, Cantivalli A, Duthon V, et al. Rupture of the anterior cruciate ligament in women. Rev Med Suisse, 2022, 18(790-2): 1449-1454.
|
7. |
Wang D, Kent RN, Amirtharaj MJ, et al. Tibiofemoral kinematics during compressive loading of the ACL-intact and acl-sectioned knee: roles of tibial slope, medial eminence volume, and anterior laxity. J Bone Joint Surg Am, 2019, 101(12): 1085-1092.
|
8. |
Lansdown D, Ma CB. The influence of tibial and femoral bone morphology on knee kinematics in the anterior cruciate ligament injured knee. Clin Sports Med, 2018, 37(1): 127-136.
|
9. |
Li Y, Chou K, Zhu W, et al. Enlarged tibial eminence may be a protective factor of anterior cruciate ligament. Med Hypotheses, 2020, 144(11): 110230.
|
10. |
Sturnick DR, Argentieri EC, Vacek PM, et al. A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females. J Orthop Res, 2014, 32(11): 1451-1457.
|
11. |
Rohila S, Jaarsma R, Mainil L, et al. Dimensions of distal femur in terms of total knee arthroplasty among different origins. A systematic review. J Arthrosc Jiont Surg, 2017, 4(1): 8-14.
|
12. |
Iriuchishima T, Goto B, Fu FH. The occurrence of ACL injury influenced by the variance in width between the tibial spine and the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc, 2020, 28(11): 3625-3630.
|
13. |
王睿铸, 纪斌平. 前交叉韧带损伤中的性别差异研究. 实用医技杂志, 2008, 15(35): 130-131.
|
14. |
倪国新. 前交叉韧带损伤的性别差异. 中国康复医学杂志, 2003, 18(5): 315-317.
|
15. |
Cavaignac E, Perroncel G, Thépaut M, et al. Relationship between tibial spine size and the occurrence of osteochondritis dissecans: an argument in favour of the impingement theory. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2442-2446.
|
16. |
Marmura H, Tremblay PF, Getgood AMJ, et al. The knee injury and osteoarthritis outcome score does not have adequate structural validity for use with young, active patients with ACL tears. Clin Orthop Relat Res, 2022, 480(7): 1342-1350.
|
17. |
吴飞鹏, 唐新, 陶红, 等. 关节镜下平衡点固定技术治疗前交叉韧带止点撕脱骨折的效果评价. 华西医学, 2020, 35(10): 1205-1211.
|
18. |
Iriuchishima T, Goto B, Fu FH. The radiographic tibial spine area is correlated with the occurrence of ACL injury. Knee Surg Sports Traumatol Arthrosc, 2022, 30(1): 78-83.
|
19. |
Uhorchak JM, Scoville CR, Williams GN, et al. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med, 2003, 31(6): 831-842.
|
20. |
Egger AC, Parikh SN, Wilson PL, et al. What ’ s new in the management of pediatric anterior cruciate ligament tears and tibial spine fractures. Instr Course Lect, 2021, 70: 399-414.
|
21. |
Hosseinzadeh S, Kiapour AM. Sex differences in anatomic features linked to anterior cruciate ligament injuries during skeletal growth and maturation. Am J Sports Med, 2020, 48(9): 2205-2212.
|
22. |
邵嘉艺, 张家豪, 刘平, 等. 前交叉韧带胫骨指点与外侧半月板前角指点解剖关系研究进展. 中国运动医学杂志, 2019, 38(12): 1066-1071.
|
23. |
Dimitriou D, Zou D, Wang Z, et al. Anterior root of lateral meniscus and medial tibial spine are reliable intraoperative landmarks for the tibial footprint of anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc, 2021, 29(3): 806-813.
|
24. |
Purnell ML, Larson AI, Clancy W. Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med, 2008, 36(11): 2083-2090.
|
25. |
Wang HM, Shultz SJ, Ross SE, et al. Sex comparisons of in vivo anterior cruciate ligament morphometry. J Athl Train, 2019, 54(5): 513-518.
|
26. |
Whitney DC, Sturnick DR, Vacek PM, et al. Relationship between the risk of suffering a first-time noncontact acl injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med, 2014, 42(8): 1796-1805.
|
27. |
Misir A, Sayer G, Uzun E, et al. Individual and combined anatomic risk factors for the development of an anterior cruciate ligament rupture in men: a multiple factor analysis case-control study. Am J Sports Med, 2022, 50(2): 433-440.
|
28. |
Xiao WF, Yang T, Cui Y, et al. Risk factors for noncontact anterior cruciate ligament injury: analysis of parameters in proximal tibia using anteroposterior radiography. J Int Med Res, 2016, 44(1): 157-163.
|
29. |
Markolf KL, Du PZ, McAllister DR. Contact force between the tibial spine and medial femoral condyle: a biomechanical study. Clin Biomech (Bristol, Avon), 2018, 60: 9-12.
|
30. |
van Kuijk KSR, Eggerding V, Reijman M, et al. Differences in knee shape between ACL injured and non-injured: a matched case-control study of 168 patients. J Clin Med, 2021, 10(5): 968.
|
31. |
Boettner F, Springer B, Windhager R, et al. The tibial spine sign does not indicate cartilage damage in the central area of the distal lateral femoral condyle. Knee Surg Sports Traumatol Arthrosc, 2020, 28(8): 2592-2597.
|
32. |
LaPrade RF. Steeper tibial slopes, like steeper ski slopes, might lead to more ACL stress and tears: commentary on an article by Dean Wang, MD, et al.: “Tibiofemoral Kinematics During Compressive Loading of the ACL-Intact and ACL-Sectioned Knee. Roles of Tibial Slope, Medial Eminence Volume, and Anterior Laxity”. J Bone Joint Surg Am, 2019, 101(12): e58.
|
33. |
Bayer S, Meredith SJ, Wilson KW, et al. Knee morphological risk factors for anterior cruciate ligament injury: a systematic review. J Bone Joint Surg Am, 2020, 102(8): 703-718.
|
34. |
Mayr R, Smekal V, Koidl C, et al. Tunnel widening after ACL reconstruction with aperture screw fixation or all-inside reconstruction with suspensory cortical button fixation: volumetric measurements on CT and MRI scans. Knee, 2017, 24(5): 1047-1054.
|
35. |
Vermesan D, Inchingolo F, Patrascu JM, et al. Anterior cruciate ligament reconstruction and determination of tunnel size and graft obliquity. Eur Rev Med Pharmacol Sci, 2015, 19(3): 357-364.
|
36. |
Stepanyan H, Nazaroff J, Le N, et al. Measurement of medial tibial eminence dimensions for clinical evaluation of ACL-injured knee: a comparison between CT and MRI. J Knee Surg, 2021, 12: 1538-1543.
|
37. |
van der List JP, Hagemans FJA, Zuiderbaan HA, et al. Age, activity level and meniscus injury, but not tear location, tibial slope or anterolateral ligament injury predict coping with anterior cruciate ligament injury. Knee, 2021, 5(29): 222-232.
|
38. |
Huang M, Li Y, Li H, et al. Correlation between knee anatomical angles and anterior cruciate ligament injury in males. Radiol Med, 2021, 126(9): 1201-1206.
|
39. |
Aljuhani WS, Qasim SS, Alrasheed A, et al. The effect of gender, age, and the body mass index on the medial and lateral posterior tibial slopes: a magnetic resonance imaging study. Knee Surg Relat Res, 2021, 33(1): 12-20.
|
40. |
Posthumus M, September AV, O’Cuinneagain D, et al. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med, 2009, 37(11): 2234-2240.
|
41. |
Grooms DR, Onate JA. Neuroscience application to noncontant anterior cruciate ligament injury prevention. Sports Health, 2016, 8(2): 149-152.
|
42. |
Weingart A, Rynecki N, Pereira D. A review of neuromuscular training and biomechanical risk factor screening for ACL injury prevention among female soccer players. Bull Hosp Jt Dis (2013), 2022, 80(3): 253-259.
|
43. |
Wang Y, Liu XM, Xiang LB, et al. Risk factors of young males with physically demanding occupations having accumulated damage of anterior cruciate ligament. Orthop Surg, 2022, 14(6): 1109-1114.
|
44. |
曲铁兵, 曾纪洲, 林源, 等. 华北地区成人正常胫骨内侧平台后倾角的测量及临床意义. 中华骨科杂志, 2003, 23(8): 455-458.
|
45. |
Komro J, Gonzales J, Marberry K, et al. Fibrocartilaginous metaplasia and neovascularization of the anterior cruciate ligament in patients with osteoarthritis. Clin Anat, 2020, 33(6): 899-905.
|