1. |
张蔚菁, 潘文志, 管丽华, 等. 经导管主动脉瓣置换术(TAVR)中同期行瓣中瓣置入术的单中心一年期临床随访结果. 中国胸心血管外科临床杂志, 2021, 28(8): 888-894.
|
2. |
Cribier A. The development of transcatheter aortic valve replacement (TAVR). Glob Cardiol Sci Pract, 2016, 2016(4): e201632.
|
3. |
Han Y. Current clinical data and experience of TAVR in China. Eur Heart J, 2022, 43(22): 2087-2088.
|
4. |
Gaede L, Blumenstein J, Husser O, et al. Aortic valve replacement in Germany in 2019. Clin Res Cardiol, 2021, 110(3): 460-465.
|
5. |
Van Mieghem NM, Tijssen J. Alternative access for TAVR: see the forest for the trees. JACC Cardiovasc Interv, 2022, 15(9): 976-978.
|
6. |
Chen M, Michel J, Kasel AM. Bilateral-stiff-wires technique simplifies extremely tortuous access in transfemoral transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2021, 14(19): e257-e258.
|
7. |
Khan JM, Babaliaros VC, Greenbaum AB, et al. Preventing coronary obstruction during transcatheter aortic valve replacement: results from the multicenter international BASILICA registry. JACC Cardiovasc Interv, 2021, 14(9): 941-948.
|
8. |
Khan JM, Bruce CG, Babaliaros VC, et al. TAVR roulette: caution regarding BASILICA laceration for TAVR-in-TAVR. JACC Cardiovasc Interv, 2020, 13(6): 787-789.
|
9. |
Westermann D, Ludwig S, Kalbacher D, et al. Prevention of coronary obstruction in patients at risk undergoing transcatheter aortic valve implantation: the hamburg BASILICA experience. Clin Res Cardiol, 2021, 110(12): 1900-1911.
|
10. |
Bieliauskas G, Wong I, Bajoras V, et al. Patient-specific implantation technique to obtain neo-commissural alignment with self-expanding transcatheter aortic valves. JACC Cardiovasc Interv, 2021, 14(19): 2097-2108.
|
11. |
王颖东, 刘娴, 王耿, 等. 应用人工瓣膜标识评估人工瓣膜嵴遮挡冠状动脉开口. 华西医学, 2022, 37(4): 531-536.
|
12. |
Tchétché D, De Biase C. Implementation of the cusp-overlap technique for TAVR With balloon-expandable devices: another step toward standardization. JACC Cardiovasc Interv, 2022, 15(23): 2396-2397.
|
13. |
Uehara K, Minakata K, Saito N, et al. Use of extracorporeal membrane oxygenation in complicated transcatheter aortic valve replacement. Gen Thorac Cardiovasc Surg, 2017, 65(6): 329-336.
|
14. |
Satler L, Thourani VH. Who can we save after an intraprocedural catastrophe during TAVR?. Catheter Cardiovasc Interv, 2018, 92(1): 157-158.
|
15. |
Huded CP, Tuzcu EM, Krishnaswamy A, et al. Association between transcatheter aortic valve replacement and early postprocedural stroke. JAMA, 2019, 321(23): 2306-2315.
|
16. |
Aladin AI, Case BC, Wermers JP, et al. Overview of FDA circulatory system devices panel virtual meeting on TriGUARD 3 cerebral embolic protection. Catheter Cardiovasc Interv, 2022, 99(6): 1789-1795.
|
17. |
Magalhaes PG, Kooistra NHM, Leenders GEH, et al. A pilot study with the TriGUARD 3 cerebral embolic protection device. EuroIntervention, 2020, 16(6): e507-e509.
|
18. |
Kapadia SR, Makkar R, Leon M, et al. Cerebral embolic protection during transcatheter aortic-valve replacement. N Engl J Med, 2022, 387(14): 1253-1263.
|
19. |
Butala NM, Makkar R, Secemsky EA, et al. Cerebral embolic protection and outcomes of transcatheter aortic valve replacement: results from the transcatheter valve therapy registry. Circulation, 2021, 143(23): 2229-2240.
|
20. |
Landes U, Sathananthan J, Witberg G, et al. Transcatheter replacement of transcatheter versus surgically implanted aortic valve bioprostheses. J Am Coll Cardiol, 2021, 77(1): 1-14.
|
21. |
Hirji SA, Percy ED, McGurk S, et al. Incidence, characteristics, predictors, and outcomes of surgical explantation after transcatheter aortic valve replacement. J Am Coll Cardiol, 2020, 76(16): 1848-1859.
|
22. |
Mauler-Wittwer S, Noble S. Where are we now with TAV-in-TAV?. JACC Cardiovasc Interv, 2022, 15(4): 378-380.
|
23. |
Geyer M, Tamm AR, Münzel T, et al. Novel transfemoral TAVR system to treat aortic regurgitation in degenerated surgical aortic valve replacement even in unfavorable anatomy. JACC Cardiovasc Interv, 2022, 15(11): e135-e136.
|
24. |
Sondergaard L. Durability of transcatheter bioprosthetic aortic valves. Eur Heart J, 2020, 41(20): 1887-1889.
|
25. |
Blackman DJ, Saraf S, MacCarthy PA, et al. Long-term durability of transcatheter aortic valve prostheses. J Am Coll Cardiol, 2019, 73(5): 537-545.
|
26. |
Yang L, Huang X, Deng L, et al. Pre-mounted dry TAVI valve with improved endothelialization potential using REDV-loaded PEGMA hydrogel hybrid pericardium. J Mater Chem B, 2020, 8(13): 2689-2701.
|
27. |
Song J, Lutz TM, Lang N, et al. Bioinspired dopamine/mucin coatings provide lubricity, wear protection, and cell-repellent properties for medical applications. Adv Healthc Mater, 2021, 10(4): e2000831.
|
28. |
Yin T, Du R, Wang Y, et al. Two-stage degradation and novel functional endothelium characteristics of a 3-D printed bioresorbable scaffold. Bioact Mater, 2021, 10: 378-396.
|
29. |
Snir A, Wilson MK, Ju LA, et al. Novel pressure-regulated deployment strategy for improving the safety and efficacy of balloon-expandable transcatheter aortic valves. JACC Cardiovasc Interv, 2021, 14(22): 2503-2515.
|
30. |
彭勇. 陈茂教授团队参与研发的新一代全释放可回收自膨干瓣 Venus-PowerX 完成首次临床应用. 首都食品与医药, 2022, 29(2): 6-7.
|
31. |
De Backer O, Wong I, Wilkins B, et al. Patient-tailored aortic valve replacement. Front Cardiovasc Med, 2021, 8: 658016.
|
32. |
Meuris B, Van Hoof L, Decré W, et al. In-vivo evaluation of a novel surgical heart valve prosthesis designed to be durable, anticoagulant-free and silent. Struct Heart, 2021, 5(sup1): 2.
|
33. |
葛均波, 胡彬. 心脏瓣膜全介入未来可期. 健康报, 2022-06-01(5).
|
34. |
Lindman BR, Sukul D, Dweck MR, et al. Evaluating medical therapy for calcific aortic stenosis: JACC state-of-the-art review. J Am Coll Cardiol, 2021, 78(23): 2354-2376.
|
35. |
Blaser MC, Kraler S, Lüscher TF, et al. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circ Res, 2021, 128(9): 1371-1397.
|
36. |
Smith JG, Luk K, Schulz CA, et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA, 2014, 312(17): 1764-1771.
|
37. |
Kronenberg F, Mora S, Stroes ESG, et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement. Eur Heart J, 2022, 43(39): 3925-3946.
|
38. |
Avvedimento M, Tang GHL. Transcatheter aortic valve replacement (TAVR): recent updates. Prog Cardiovasc Dis, 2021, 69: 73-83.
|
39. |
Deharo P, Bisson A, Herbert J, et al. Transcatheter valve-in-valve aortic valve replacement as an alternative to surgical re-replacement. J Am Coll Cardiol, 2020, 76(5): 489-499.
|
40. |
Aoi S, Chau M, Tanaka C, et al. “Matryoshka” valve-in-valve-in-valve transcatheter aortic valve replacement and do-it-yourself catheter to cross aortic valve bioprosthesis stenosis. JACC Cardiovasc Interv, 2021, 14(9): e97-e100.
|
41. |
Nguyen V, Willner N, Eltchaninoff H, et al. Trends in aortic valve replacement for aortic stenosis: a French nationwide study. Eur Heart J, 2022, 43(7): 666-679.
|
42. |
Claessen BE, Tang GHL, Kini AS, et al. Considerations for optimal device selection in transcatheter aortic valve replacement: a review. JAMA Cardiol, 2021, 6(1): 102-112.
|
43. |
Bapat VN, Zaid S, Fukuhara S, et al. Surgical explantation after TAVR failure: mid-term outcomes from the EXPLANT-TAVR international registry. JACC Cardiovasc Interv, 2021, 14(18): 1978-1991.
|
44. |
Meier D, Akodad M, Chatfield AG, et al. Impact of commissural misalignment on hydrodynamic function following valve-in-valve intervention with the ACURATE neo. JACC Cardiovasc Interv, 2022, 15(15): 1532-1539.
|
45. |
Faroux L, Lhermusier T, Vincent F, et al. ST-segment elevation myocardial infarction following transcatheter aortic valve replacement. J Am Coll Cardiol, 2021, 77(17): 2187-2199.
|
46. |
Park DW, Park SJ. Unplanned coronary intervention after TAVR: timing, causes, and management. JACC Cardiovasc Interv, 2021, 14(2): 208-210.
|
47. |
Okuno T. Risk of “future” coronary obstruction: a key factor in patient-tailored lifetime management of aortic stenosis. JACC Cardiovasc Interv, 2022, 15(7): 725-727.
|
48. |
Hatoum H, Gooden SCM, Sathananthan J, et al. Neosinus and sinus flow after self-expanding and balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2021, 14(24): 2657-2666.
|
49. |
Witberg G, Codner P, Landes U, et al. Transcatheter treatment of residual significant mitral regurgitation following TAVR: a multicenter registry. JACC Cardiovasc Interv, 2020, 13(23): 2782-2791.
|
50. |
Wang DD, Qian Z, Vukicevic M, et al. 3D printing, computational modeling, and artificial intelligence for structural heart disease. JACC Cardiovasc Imaging, 2021, 14(1): 41-60.
|
51. |
李岳环, 孟旭, 周玉杰, 等. 经导管主动脉瓣植入(TAVI)手术人工瓣膜滑脱危险因素分析及治疗. 中国胸心血管外科临床杂志, 2020, 27(7): 807-812.
|
52. |
Thourani VH, Yadav PK, Prendergast B. TAVR sustains its promise in low-risk patients, but the journey is far from over. J Am Coll Cardiol, 2022, 79(9): 897-899.
|
53. |
Wood DA, Lauck SB, Cairns JA, et al. The vancouver 3M (multidisciplinary, multimodality, but minimalist) clinical pathway facilitates safe next-day discharge home at low-, medium-, and high-volume transfemoral transcatheter aortic valve replacement centers: the 3M TAVR study. JACC Cardiovasc Interv, 2019, 12(5): 459-469.
|