1. |
王珏, 王彬杰, 杨加彩, 等. 新型冠状病毒肺炎诱发肺纤维化的机制及相关治疗研究进展. 中华烧伤杂志, 2020, 36(8): 691-697.
|
2. |
Zumla A, Hui DS, Azhar EI, et al. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet, 2020, 395(10224): e35-e36.
|
3. |
Kitaoka H, Kobayashi H, Takimoto T, et al. Proposal of selective wedge instillation of pulmonary surfactant for COVID-19 pneumonia based on computational fluid dynamics simulation. BMC Pulm Med, 2021, 21(1): 62.
|
4. |
刘学芳, 冯素香, 田燕歌, 等. 肺泡表面活性物质与慢性阻塞性肺疾病研究进展. 中国老年学杂志, 2018, 38(6): 1521-1523.
|
5. |
Biselli PJC, Degobbi Tenorio Quirino Dos Santos Lopes F, Righetti RF, et al. Lung mechanics over the century: from bench to bedside and back to bench. Front Physiol, 2022, 13: 817263.
|
6. |
陈月明. 医用物理学. 3 版. 合肥: 中国科学技术大学出版社, 2019: 74-78.
|
7. |
Kang D, Chugunova M, Nadim A, et al. Modeling coating flow and surfactant dynamics inside the alveolar compartment. J Eng Math, 2018, 113: 23-43.
|
8. |
王君健. 呼吸力学. 北京: 科学出版社, 1990: 11-12.
|
9. |
Chen L, Zhao X. Characterization of air flow and lung function in the pulmonary acinus by fluid-structure interaction in idiopathic interstitial pneumonias. PLoS One, 2019, 14(3): e0214441.
|
10. |
Kim J, Heise RL, Reynolds AM, et al. Aging effects on airflow dynamics and lung function in human bronchioles. PLoS One, 2017, 12(8): e0183654.
|
11. |
Aghasafari P, Pidaparti R. Influence of tidal-volume setting, emphysema and ARDS on human alveolar sacs mechanics. Acta Mechanica Sinica, 2018, 34(5): 983-993.
|
12. |
Sznitman J. Respiratory microflows in the pulmonary acinus. J Biomech, 2013, 46(2): 284-298.
|
13. |
Ma B, Darquenne C. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. J Appl Physiol (1985), 2011, 110(5): 1271-1282.
|
14. |
Lin CL, Tawhai MH, McLennan G, et al. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol, 2007, 157(2/3): 295-309.
|
15. |
Kumar H, Vasilescu DM, Yin Y, et al. Multiscale imaging and registration-driven model for pulmonary acinar mechanics in the mouse. J Appl Physiol (1985), 2013, 114(8): 971-978.
|
16. |
Hofemeier P, Sznitman J. Role of alveolar topology on acinar flows and convective mixing. J Biomech Eng, 2014, 136(6): 061007.
|
17. |
Weibel ER, Gomez DM. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science, 1962, 137(3530): 577-585.
|
18. |
Fung YC. A model of the lung structure and its validation. J Appl Physiol (1985), 1988, 64(5): 2132-2141.
|
19. |
Harding EM, Robinson RJ. Flow in a terminal alveolar sac model with expanding walls using computational fluid dynamics. Inhal Toxicol, 2010, 22(8): 669-678.
|
20. |
Aghasafari P, Bin M Ibrahim I, Pidaparti R. Strain-induced inflammation in pulmonary alveolar tissue due to mechanical ventilation. Biomech Model Mechanobiol, 2017, 16(4): 1103-1118.
|
21. |
Kolanjiyil AV, Kleinstreuer C. Modeling airflow and particle deposition in a human acinar region. Comput Math Methods Med, 2019, 2019: 5952941.
|
22. |
Monjezi M, Saidi MS. Fluid-structure interaction analysis of airflow in pulmonary alveoli during normal breathing in healthy humans. Scientia Iranica, 2016, 23(4): 1826-1836.
|
23. |
Eslami Saray MA, Saidi MS, Ahmadi G. Airflow patterns in a 3D model of the human acinus. Scientia Iranica, 2017: 2379-2386.
|
24. |
Kumar H, Tawhai MH, Hoffman EA, et al. The effects of geometry on airflow in the acinar region of the human lung. J Biomech, 2009, 42(11): 1635-1642.
|
25. |
Dutta A, Vasilescu DM, Hogg JC, et al. Simulation of airflow in an idealized emphysematous human acinus. J Biomech Eng, 2018, 140(7): 071001.
|
26. |
Kleinstreuer C, Zhang Z. Airflow and particle transport in the human respiratory system. Ann Rev Fluid Mech, 2010, 42(1): 301-334.
|
27. |
Denny E, Schroter RC. The mechanical behavior of a mammalian lung alveolar duct model. J Biomech Eng, 1995, 117(3): 254-261.
|
28. |
Darquenne C, Harrington L, Prisk GK. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Philos Trans A Math Phys Eng Sci, 2009, 367(1896): 2333-2346.
|
29. |
Ciloglu D. Numerical simulation of the unsteady flow field in the human pulmonary acinus. Sādhanā, 2021, 46(4): 186.
|
30. |
Kannan RR, Singh N, Przekwas A, et al. A quasi-3D model of the whole lung: airway extension to the tracheobronchial limit using the constrained constructive optimization and alveolar modeling, using a sac-trumpet model. J Comput Des Eng, 2021, 8(2): 691-704.
|
31. |
Chen L, Tao W, Ji W, et al. Effects of pulmonary fibrosis and surface tension on alveolar sac mechanics in diffuse alveolar damage. J Biomech Eng, 2021, 143(8): 081013.
|
32. |
Marchioni A, Tonelli R, Cerri S, et al. Pulmonary stretch and lung mechanotransduction: implications for progression in the fibrotic lung. Int J Mol Sci, 2021, 22(12): 6443.
|
33. |
Xi J, Talaat K, Si XA. Deposition of bolus and continuously inhaled aerosols in rhythmically moving terminal alveoli. J Comput Multiph Flows, 2018, 10(4): 178-193.
|
34. |
Jin YJ, Cui HH, Chen L, et al. Tessellation-based modeling and flow simulation of pulmonary acinus with alveolar pore. Int J Numer Methods Heat Fluid Flow, 2023, 33(1): 42-64.
|
35. |
Hofemeier P, Koshiyama K, Wada S, et al. One (sub-)acinus for all: Fate of inhaled aerosols in heterogeneous pulmonary acinar structures. Eur J Pharm Sci, 2018, 113: 53-63.
|
36. |
曾衍钧. 人肺的本构方程. 中国生物医学工程学报, 1988(1): 13-19.
|
37. |
Fung YC. Biomechanics: mechanical properties of living tissues. New York: Springer Verlag, 1993: 242-320.
|
38. |
Koshiyama K, Nishimoto K, Ii S, et al. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: a finite element analysis. Clin Biomech (Bristol, Avon), 2019, 66: 32-39.
|
39. |
Zeng YJ, Yager D, Fung YC. Measurement of the mechanical properties of the human lung tissue. J Biomech Eng, 1987, 109(2): 169-174.
|
40. |
Birzle AM, Wall WA. A viscoelastic nonlinear compressible material model of lung parenchyma. Experiments and numerical identification. J Mech Behav Biomed Mater, 2019, 94: 164-175.
|
41. |
Yuan H, Ingenito EP, Suki B. Dynamic properties of lung parenchyma: mechanical contributions of fiber network and interstitial cells. J Appl Physiol (1985), 1997, 83(5): 1420-1431.
|
42. |
Francis I, Saha SC. Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung. Heliyon, 2022, 8(10): e11026.
|
43. |
Kori J, Pratibha. Simulation and modeling for aging and particle shape effect on airflow dynamics and filtration efficiency of human lung. J Appl Fluid Mech, 2019, 12(4): 1273-1285.
|
44. |
李鹏辉, 徐新喜, 李蓉, 等. 多因素影响下的人体肺腺泡区吸入颗粒物沉积规律数值模拟研究. 生物医学工程学杂志, 2020, 37(5): 793-801.
|
45. |
Zurita P, Hurtado DE. Computational modeling of capillary perfusion and gas exchange in alveolar tissue. Comput Methods Appl Mech Eng, 2022, 399: 115418.
|
46. |
Hofemeier P, Shachar-Berman L, Tenenbaum-Katan J, et al. Unsteady diffusional screening in 3D pulmonary acinar structures: from infancy to adulthood. J Biomech, 2016, 49(11): 2193-2200.
|
47. |
Kori J, Pratibha. Effect of first order chemical reactions on the dispersion coefficient associated with laminar flow through fibrosis affected lung. J Biomech, 2020, 99: 109494.
|
48. |
Caucha LJ, Frei S, Rubio O. Finite element simulation of fluid dynamics and CO2 gas exchange in the alveolar sacs of the human lung. Comput Appl Math, 2018, 37(5): 6410-6432.
|
49. |
Ismail M, Comerford A, Wall WA. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. Int J Numer Meth Biomed Engng, 2013, 29(11): 1285-1305.
|