1. |
Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science, 2013, 342(6158): 1238411.
|
2. |
Raichle ME. Two views of brain function. Trends Cogn Sci, 2010, 14(4): 180-190.
|
3. |
Ekstrom AD, Huffman DJ, Starrett M. Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J Neurophysiol, 2017, 118(6): 3328-3344.
|
4. |
Julian JB, Keinath AT, Marchette SA, et al. The neurocognitive basis of spatial reorientation. Curr Biol, 2018, 28(17): R1059-R1073.
|
5. |
Lester AW, Moffat SD, Wiener JM, et al. The aging navigational system. Neuron, 2017, 95(5): 1019-1035.
|
6. |
Ramanoël S, York E, Le Petit M, et al. Age-related differences in functional and structural connectivity in the spatial navigation brain network. Front Neural Circuits, 2019, 13: 69.
|
7. |
Li AWY, King J. Spatial memory and navigation in ageing: a systematic review of MRI and fMRI studies in healthy participants. Neurosci Biobehav Rev, 2019, 103: 33-49.
|
8. |
Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440-442.
|
9. |
Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol, 2013, 23(2): 162-171.
|
10. |
Hallquist MN, Hillary FG. Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world. Netw Neurosci, 2018, 3(1): 1-26.
|
11. |
Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist, 2017, 23(5): 499-516.
|
12. |
Li W, Zhao H, Qing Z, et al. Disrupted network topology contributed to spatial navigation impairment in patients with mild cognitive impairment. Front Aging Neurosci, 2021, 13: 630677.
|
13. |
Bai F, Shu N, Yuan Y, et al. Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci, 2012, 32(12): 4307-4318.
|
14. |
Wikenheiser AM, Schoenbaum G. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev Neurosci, 2016, 17(8): 513-523.
|
15. |
Patai EZ, Spiers HJ. The Versatile Wayfinder: prefrontal contributions to spatial navigation. Trends Cogn Sci, 2021, 25(6): 520-533.
|
16. |
Elliott Wimmer G, Büchel C. Learning of distant state predictions by the orbitofrontal cortex in humans. Nat Commun, 2019, 10(1): 2554.
|
17. |
Miller KJ, Botvinick MM, Brody CD. Value representations in the rodent orbitofrontal cortex drive learning, not choice. Elife, 2022, 11: e64575.
|
18. |
Gu Y, Cheng Z, Yang L, et al. Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field. Cereb Cortex, 2016, 26(9): 3785-3801.
|
19. |
Sato N, Sakata H, Tanaka YL, et al. Navigation-associated medial parietal neurons in monkeys. Proc Natl Acad Sci U S A, 2006, 103(45): 17001-17006.
|
20. |
Schindler A, Bartels A. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain. Neuroimage, 2018, 172: 597-607.
|
21. |
Liu B, Tian Q, Gu Y. Robust vestibular self-motion signals in macaque posterior cingulate region. Elife, 2021, 10: e64569.
|
22. |
Grill-Spector K. The neural basis of object perception. Curr Opin Neurobiol, 2003, 13(2): 159-166.
|
23. |
Dilks DD, Julian JB, Paunov AM, et al. The occipital place area is causally and selectively involved in scene perception. J Neurosci, 2013, 33(4): 1331-1336.
|
24. |
Julian JB, Ryan J, Hamilton RH, et al. The occipital place area is causally involved in representing environmental boundaries during navigation. Curr Biol, 2016, 26(8): 1104-1109.
|
25. |
Suzuki S, Kamps FS, Dilks DD, et al. Two scene navigation systems dissociated by deliberate versus automatic processing. Cortex, 2021, 140: 199-209.
|
26. |
Epstein RA, Baker CI. Scene perception in the human brain. Annu Rev Vis Sci, 2019, 5: 373-397.
|
27. |
Qiu Y, Wu Y, Liu R, et al. Representation of human spatial navigation responding to input spatial information and output navigational strategies: an ALE meta-analysis. Neurosci Biobehav Rev, 2019, 103: 60-72.
|
28. |
Choe KY, Sanchez CF, Harris NG, et al. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain. Neuroimage, 2018, 173: 370-383.
|
29. |
Watson TC, Obiang P, Torres-Herraez A, et al. Anatomical and physiological foundations of cerebello-hippocampal interaction. Elife, 2019, 17(8): e41896.
|