1. |
Boeken T, Feydy J, Lecler A, et al. Artificial intelligence in diagnostic and interventional radiology: where are we now?. Diagn Interv Imaging, 2023, 104(1): 1-5.
|
2. |
Frankiewicz M, Vetterlein MW, Matuszewski M, et al. VR, reconstructive urology and the future of surgery education. Nat Rev Urol, 2023: 1-2.
|
3. |
Banerjee S, Pham T, Eastaway A, et al. The use of virtual reality in teaching three-dimensional anatomy and pathology on CT. J Digit Imaging, 2023: 1-6.
|
4. |
韩浩贤, 刘运德, 赵珊, 等. 医学类虚拟仿真实验教学中心建设的 SWOT 分析. 中国高等医学教育, 2018(11): 16-17.
|
5. |
Nielsen CA, Lönn L, Konge L, et al. Simulation-based virtual-reality patient-specific rehearsal prior to endovascular procedures: a systematic review. Diagnostics (Basel), 2020, 10(7): 500.
|
6. |
Bourdillon AT, Garg A, Wang H, et al. Integration of reinforcement learning in a virtual robotic surgical simulation. Surg Innov, 2023, 30(1): 94-102.
|
7. |
Paro MR, Hersh DS, Bulsara KR. History of virtual reality and augmented reality in neurosurgical training. World Neurosurg, 2022, 167: 37-43.
|
8. |
Jung C, Wolff G, Wernly B, et al. Virtual and augmented reality in cardiovascular care: state-of-the-art and future perspectives. JACC Cardiovasc Imaging, 2022, 15(3): 519-532.
|
9. |
Shi P, Guo S, Jin X, et al. A novel catheter interaction simulating method for virtual reality interventional training systems. Med Biol Eng Comput, 2023, 61(3): 685-697.
|
10. |
Suryadevara NC, Reddy A, Bradshaw D, et al. Stroke neurointervention: a novel educational pathway to improve neurology resident training in neurointervention and regional access to thrombectomy. Stroke Vasc Interv Neurol, 2022, 2(6): e000414.
|
11. |
Bao X, Guo S, Xiao N, et al. A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot. Biomed Microdevices, 2018, 20(1): 20.
|
12. |
Mascheroni J, Mont L, Stockburger M, et al. A validation study of intraoperative performance metrics for training novice cardiac resynchronization therapy implanters. Int J Cardiol, 2020, 307: 48-54.
|
13. |
El-Andari R, Bozso SJ, Kang JJH, et al. Review of the use of simulators in learning revascularization techniques. Gen Thorac Cardiovasc Surg, 2021, 69(3): 415-424.
|
14. |
张扬, 谢叻, 沈浩, 等. 心血管介入虚拟手术的力反馈研究. 机械设计与研究, 2017, 33(4): 58-62, 67.
|
15. |
陈铁凝, 康瑞瑞, 朱建军, 等. 基于非线性力反馈的血管介入手术训练系统. 光学技术, 2019, 45(2): 129-135.
|
16. |
王宇, 石志航. 血管介入手术 VR 训练系统的力检测装置设计. 机械设计与制造, 2022(6): 149-151.
|
17. |
何昊, 叶子健, 舒畅. 血管介入手术机器人系统关键技术及研发现状. 中国普通外科杂志, 2021, 30(12): 1477-1484.
|
18. |
Johnson SJ, Guediri SM, Kilkenny C, et al. Development and validation of a virtual reality simulator: human factors input to interventional radiology training. Hum Factors, 2011, 53(6): 612-625.
|
19. |
Chaer RA, Derubertis BG, Lin SC, et al. Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg, 2006, 244(3): 343-352.
|
20. |
Berry M, Lystig T, Beard J, et al. Porcine transfer study: virtual reality simulator training compared with porcine training in endovascular novices. Cardiovasc Intervent Radiol, 2007, 30(3): 455-461.
|
21. |
Nesbitt CI, Tingle SJ, Williams R, et al. Educational impact of a pulsatile human cadaver circulation model for endovascular training. Eur J Vasc Endovasc Surg, 2019, 58(4): 602-608.
|
22. |
Zaed I, Chibbaro S, Ganau M, et al. Simulation and virtual reality in intracranial aneurysms neurosurgical training: a systematic review. Neurosurg Sci, 2022, 66(6): 494-500.
|
23. |
Gelmini AYP, Duarte ML, de Assis AM, et al. Virtual reality in interventional radiology education: a systematic review. Radiol Bras, 2021, 54(4): 254-260.
|
24. |
Wang HY, Wu JH. A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction. Virtual Real Intell Hardw, 2021, 3(4): 302-314.
|
25. |
Knudsen BE, Matsumoto ED, Chew BH, et al. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase Ⅰ. J Urol, 2006, 176(5): 2173-2178.
|
26. |
Berry M, Hellström M, Göthlin J, et al. Endovascular training with animals versus virtual reality systems: an economic analysis. J Vasc Interv Radiol, 2008, 19(2 Pt 1): 233-238.
|
27. |
Mishra R, Narayanan MDK, Umana GE, et al. Virtual reality in neurosurgery: beyond neurosurgical planning. Int J Environ Res Public Health, 2022, 19(3): 1719.
|
28. |
Cohen ER, Feinglass J, Barsuk JH, et al. Cost savings from reduced catheter-related bloodstream infection after simulation-based education for residents in a medical intensive care unit. Simul Healthc, 2010, 5(2): 98-102.
|
29. |
Glaiberman CB, Jacobs B, Street M, et al. Simulation in training: one-year experience using an efficiency index to assess interventional radiology fellow training status. J Vasc Interv Radiol, 2008, 19(9): 1366-1371.
|
30. |
Li S, Guo J, Wang Q, et al. A catheterization-training simulator based on a fast multigrid solver. IEEE Comput Graph Appl, 2012, 32(6): 56-70.
|
31. |
Berry M, Reznick R, Lystig T, et al. The use of virtual reality for training in carotid artery stenting: a construct validation study. Acta Radiol, 2008, 49(7): 801-805.
|
32. |
Van Herzeele I, Aggarwal R, Choong A, et al. Virtual reality simulation objectively differentiates level of carotid stent experience in experienced interventionalists. J Vasc Surg, 2007, 46(5): 855-863.
|
33. |
Faruki A, Nguyen T, Proeschel S, et al. Virtual reality as an adjunct to anesthesia in the operating room. Trials, 2019, 20(1): 782.
|
34. |
Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, et al. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg, 2019, 69(1): 227-235.
|