1. |
The Lancet. Long COVID: 3 years in. Lancet, 2023, 401(10379): 795.
|
2. |
Kandeel M, Mohamed MEM, Abd El-Lateef HM, et al. Omicron variant genome evolution and phylogenetics. J Med Virol, 2022, 94(4): 1627-1632.
|
3. |
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med, 2021, 27(4): 601-615.
|
4. |
Ran S, Yao J, Liu B. The association between COVID-19 and cognitive performance: a Mendelian randomization analysis. Alzheimers Dement, 2023, 19(6): 2742-2744.
|
5. |
Li K, Fang Y, Li W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol, 2020, 30(8): 4407-4416.
|
6. |
Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol, 2020, 30(6): 3306-3309.
|
7. |
Benameur N, Mahmoudi R, Zaid S, et al. SARS-CoV-2 diagnosis using medical imaging techniques and artificial intelligence: a review. Clin Imaging, 2021, 76: 6-14.
|
8. |
Wilson M, Sampson M, Barrowman N, et al. Bibliometric analysis of neurology articles published in general medicine journals. JAMA Netw Open, 2021, 4(4): e215840.
|
9. |
Chen C. A Glimpse of the first eight months of the COVID-19 literature on microsoft academic graph: themes, citation contexts, and uncertainties. Front Res Metr Anal, 2020, 5: 607286.
|
10. |
张泽华, 郭姗姗, 赵志刚, 等. 基于 CiteSpace 的新冠肺炎研究文献计量分析. 中国医院药学杂志, 2020, 40(19): 2029-2035.
|
11. |
Xu G, Jin B, Xian X, et al. Evolutions in the management of hepatocellular carcinoma over last 4 decades: an analysis from the 100 most influential articles in the field. Liver Cancer, 2021, 10(2): 137-150.
|
12. |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497-506.
|
13. |
Ai T, Yang Z, Hou H, et al. Correlation of chest ct and rt-pcr testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 2020, 296(2): E32-E40.
|
14. |
Pan F, Ye T, Sun P, et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology, 2020, 295(3): 715-721.
|
15. |
Alghamdi HS, Amoudi G, Elhag S, et al. Deep learning approaches for detecting COVID-19 from chest X-ray images: a survey. IEEE Access, 2021, 9: 20235-20254.
|
16. |
Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology, 2020, 296(2): E65-E71.
|
17. |
Wang J, Liu C, Li J, et al. iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients. NPJ Digit Med, 2021, 4(1): 124.
|
18. |
刘士远. 医学影像人工智能发展趋势与挑战. 中华放射学杂志, 2021, 55(7): 700-702.
|
19. |
Jin C, Chen W, Cao Y, et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat Commun, 2020, 11(1): 5088.
|
20. |
Li L, Gou CY, Li XM, et al. Effects of Chinese medicine on symptoms, syndrome evolution, and lung inflammation absorption in COVID-19 convalescent patients during 84-day follow-up after hospital discharge: a prospective cohort and nested case-control study. Chin J Integr Med, 2021, 27(4): 245-251.
|
21. |
董国菊, 王冰, 李浩. 中西医结合治疗新型冠状病毒肺炎重症患者的思考. 中国中西医结合杂志, 2020, 40(3): 269-271.
|