1. |
Lu L, Shang X, Liu B, et al. Repair of articular cartilage defect using adipose‐derived stem cell‐loaded scaffold derived from native cartilage extracellular matrix. J Cell Physiol, 2021, 236(6): 4244-4257.
|
2. |
Liu Y, Liu L, Wang Z, et al. Application of electrospinning strategy on cartilage tissue engineering. Curr Stem Cell Res Ther, 2018, 13(7): 526-532.
|
3. |
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev, 2023, 192: 114647.
|
4. |
Ghasemi-Mobarakeh L, Prabhakaran MP, Balasubramanian P, et al. Advances in electrospun nanofibers for bone and cartilage regeneration. J Nanosci Nanotechnol, 2013, 13(7): 4656-4671.
|
5. |
McCullen SD, Autefage H, Callanan A, et al. Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng Part A, 2012, 18(19/20): 2073-2083.
|
6. |
Wulin S, Shiu BC, Yuan QY, et al. Evaluation of mechanical properties of porous chitosan/gelatin/polycaprolactone bone scaffold prepared by microwave foaming method. Polymers (Basel), 2022, 14(21): 4668.
|
7. |
Conley BM, Yang L, Bhujel B, et al. Development of a nanohybrid peptide hydrogel for enhanced intervertebral disc repair and regeneration. ACS Nano, 2023, 17(4): 3750-3764.
|
8. |
Feng X, Xu P, Shen T, et al. , Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo. J Mater Chem B, 2020, 8(3): 391-405.
|
9. |
Lin HY, Tsai WC, Chang SH. Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair. J Biomater Sci Polym Ed, 2017, 28(7): 664-678.
|
10. |
He X, Fu W, Feng B, et al. Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering. J Nanosci Nanotechnol, 2013, 13(6): 3818-3825.
|
11. |
Zhao W, Du Z, Fang J, et al. Synthetic/natural blended polymer fibrous meshes composed of polylactide, gelatin and glycosaminoglycan for cartilage repair. J Biomater Sci Polym Ed, 2020, 31(11): 1437-1456.
|
12. |
Chen W, Chen S, Morsi Y, et al. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces, 2016, 8(37): 24415-24425.
|
13. |
Ching KY, Andriotis O, Sengers B, et al. Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage. J Biomater Appl, 2021, 36(3): 503-516.
|
14. |
Mirmusavi MH, Ahmadian M, Karbasi S. Polycaprolactone-chitosan/multi-walled carbon nanotube: a highly strengthened electrospun nanocomposite scaffold for cartilage tissue engineering. Int J Biol Macromol, 2022, 209 (Pt B): 1801-1814.
|
15. |
Ghadirian S, Karbasi S. Evaluation of the effects of halloysite nanotube on polyhydroxybutyrate - chitosan electrospun scaffolds for cartilage tissue engineering applications. Int J Biol Macromol, 2023, 233: 123651.
|
16. |
Li G, Sun S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules, 2022, 27(9): 2757.
|
17. |
Riazi Moghadam R, Keshvari H, Imani R, et al. A biomimetic three-layered fibrin gel/PLLA nanofibers composite as a potential scaffold for articular cartilage tissue engineering application. Biomed Mater, 2022, 17(5): 1-26.
|
18. |
Cao Y, Sun L, Liu Z, et al. 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone. Regen Biomater, 2023, 10: rbac104.
|
19. |
Elder S, Roberson JG, Warren J, et al. Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin. Molecules, 2022, 27(12): 3739.
|
20. |
Rafiei M, Jooybar E, Abdekhodaie MJ, et al. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. Mater Sci Eng C Mater Biol Appl, 2020, 113: 110913.
|
21. |
Zheng R, Wang X, Xue J, et al. Regeneration of subcutaneous cartilage in a swine model using autologous auricular chondrocytes and electrospun nanofiber membranes under conditions of varying Gelatin/PCL ratios. Front Bioeng Biotechnol, 2021, 9: 752677.
|
22. |
Liang R, Yang X, Yew PYM, et al. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J Nanobiotechnology, 2022, 20(1): 327.
|
23. |
Movahedi M, Karbasi S. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. Int J Biol Macromol, 2022, 214: 301-311.
|
24. |
Barbosa F, Ferreira FC, Silva JC. Piezoelectric electrospun fibrous scaffolds for bone, articular cartilage and osteochondral tissue engineering. Int J Mol Sci, 2022, 23(6): 2907.
|
25. |
Zadehnajar P, Akbari B, Karbasi S, et al. Preparation and characterization of poly ε-caprolactone-gelatin/multi-walled carbon nanotubes electrospun scaffolds for cartilage tissue engineering applications. Int J Polym Mater Polym Biomater, 2020, 69(5): 326-337.
|
26. |
Silva JC, Udangawa RN, Chen J, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl, 2020, 107: 110291.
|
27. |
Samie M, Khan AF, Hardy JG, et al. Electrospun Antibacterial Composites for Cartilage Tissue Engineering. Macromol Biosci, 2022, 22(9): e2200219.
|
28. |
Malinauskas M, Jankauskaite L, Aukstikalne L, et al. Cartilage regeneration using improved surface electrospun bilayer polycaprolactone scaffolds loaded with transforming growth factor-beta 3 and rabbit muscle-derived stem cells. Front Bioeng Biotechnol, 2022, 10: 971294.
|
29. |
Martin AR, Patel JM, Locke RC, et al. Nanofibrous hyaluronic acid scaffolds delivering TGF-β3 and SDF-1α for articular cartilage repair in a large animal model. Acta Biomater, 2021, 126: 170-182.
|
30. |
Han F, Yu Q, Chu G, et al. Multifunctional nanofibrous scaffolds with angle‐ply microstructure and co‐delivery capacity promote partial repair and total replacement of intervertebral disc. Adv Healthc Mater, 2022, 11(19): e2200895.
|
31. |
Kadir ND, Yang Z, Hassan A, et al. Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther, 2021, 12(1): 100.
|
32. |
Olvera D, Sathy BN, Carroll SF, et al. Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation. Acta Biomater, 2017, 64: 148-160.
|
33. |
Girão AF, Semitela Â, Pereira AL, et al. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. J Mater Sci Mater Med, 2020, 31(8): 69.
|
34. |
Chen Q, Yan X, Chen K, et al. Electrospun fibrous membrane reinforced hydrogels with preferable mechanical and tribological performance as cartilage substitutes. J Mater Chem B, 2023, 11(8): 1713-1724.
|
35. |
Wang M, Zhao J, Luo Y, et al. 3D contour printing of anatomically mimetic cartilage grafts with microfiber‐reinforced double‐network bioink. Macromol Biosci, 2022, 22(9): e2200179.
|
36. |
Chen Y, Xu W, Shafiq M, et al. Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. J Colloid Interface Sci, 2021, 603: 94-109.
|
37. |
Chen Y, Xu W, Shafiq M, et al. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Biomater Adv, 2022, 134: 112643.
|