- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P. R. China;
In recent years, a rapid development in non-invasive brain stimulation (NIBS) techniques have been witnessed in the field of rehabilitation. These techniques have gained significant attention from researchers in the field of brain dysfunction rehabilitation, holding great promise as a therapeutic modality to alleviate impairments in brain function. However, the efficacy of most NIBS treatment protocols often falls short of patients’ expectations in clinical practice. To address this gap, further research and practical efforts are necessary to delve into the mechanisms underlying NIBS effectiveness, devise strategies for enhancing efficacy, and address safety concerns associated with its application. This article provides a comprehensive review of recent research advancements of NIBS in the context of brain dysfunction. Moreover, it offers insights into future development trends, intending to serve as a valuable reference for studies investigating the effectiveness and safety of NIBS, while guiding appropriate clinical practices in rehabilitation.
Citation: WANG Xianglong, WU Wen. Non-invasive brain stimulation in brain dysfunction rehabilitation: recent advances and emerging trends. West China Medical Journal, 2023, 38(6): 815-821. doi: 10.7507/1002-0179.202304159 Copy
1. | Cambiaghi M, Cordaro M, Dossena S, et al. Editorial: non-invasive brain stimulation techniques in neurological and neuropsychiatric disorders: physiological and molecular evidence. Front Syst Neurosci, 2023, 17: 1128205. |
2. | Fecteau S. Influencing human behavior with noninvasive brain stimulation: direct human brain manipulation revisited. Neuroscientist, 2023, 29(3): 317-331. |
3. | Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turk J Phys Med Rehabil, 2022, 68(1): 1-8. |
4. | Koch G, Caltagirone C. Non-invasive brain stimulation: from brain physiology to clinical opportunity. Neurosci Lett, 2020, 719: 134496. |
5. | Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol, 2019, 160: 559-580. |
6. | Lafleur LP, Tremblay S, Whittingstall K, et al. Assessment of effective connectivity and plasticity with dual-coil transcranial magnetic stimulation. Brain Stimul, 2016, 9(3): 347-355. |
7. | Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul, 2013, 6(1): 1-13. |
8. | Deng ZD, Lisanby SH, Peterchev AV. On the stimulation depth of transcranial magnetic stimulation coils. Clin Neurophysiol, 2015, 126(4): 843-844. |
9. | Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul, 2014, 7(5): 643-649. |
10. | Harel EV, Zangen A, Roth Y, et al. H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World J Biol Psychiatry, 2011, 12(2): 119-126. |
11. | Klírová M, Laskov O, Renka J, et al. An rTMS-induced seizure during low frequency repetitive transcranial magnetic stimulation with a double-cone coil for spasticity: a case report. Brain Stimul, 2022, 15(5): 1120-1121. |
12. | Chieffo R, De Prezzo S, Houdayer E, et al. Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor function in chronic stroke: a pilot study. Arch Phys Med Rehabil, 2014, 95(6): 1141-1147. |
13. | Guadagnin V, Parazzini M, Liorni I, et al. Modelling of deep transcranial magnetic stimulation: different coil configurations. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 4306-4309. |
14. | King ES, Tang AD. Intrinsic plasticity mechanisms of repetitive transcranial magnetic stimulation. Neuroscientist, 2022, 5: 10738584221118262. |
15. | Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018). Clin Neurophysiol, 2020, 131(2): 474-528. |
16. | Venkatasubramanian G, Narayanaswamy JC. Transcranial direct current stimulation in psychiatry. Lancet Psychiatry, 2019, 6(1): 8-9. |
17. | Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT, 2018, 34(3): 144-152. |
18. | Nitsche MA, Paulus W. Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci, 2011, 29(6): 463-492. |
19. | Priori A, Hallett M, Rothwell JC. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation?. Brain Stimul, 2009, 2(4): 241-245. |
20. | Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci, 2013, 7: 317. |
21. | He Y, Liu S, Chen L, et al. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci, 2023, 17: 1091925. |
22. | Rufener KS, Zaehle T, Oechslin MS, et al. 40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception. Int J Psychophysiol, 2016, 101: 18-24. |
23. | Kehler L, Francisco CO, Uehara MA, et al. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 3649-3653. |
24. | Frohlich F, Riddle J, Abramowitz JS. Transcranial alternating current stimulation for the treatment of obsessive-compulsive disorder?. Brain Stimul, 2021, 14(4): 1048-1050. |
25. | Wang H, Wang K, Xue Q, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain, 2022, 145(1): 83-91. |
26. | Kim S, Jo Y, Kook G, et al. Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimul, 2021, 14(2): 290-300. |
27. | di Biase L, Falato E, Di Lazzaro V. Transcranial focused ultrasound (tFUS) and transcranial unfocused ultrasound (tUS) neuromodulation: from theoretical principles to stimulation practices. Front Neurol, 2019, 10: 549. |
28. | Moosa S, Martínez-Fernández R, Elias WJ, et al. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov Disord, 2019, 34(9): 1243-1251. |
29. | Dababou S, Marrocchio C, Scipione R, et al. High-intensity focused ultrasound for pain management in patients with cancer. Radiographics, 2018, 38(2): 603-623. |
30. | Rezayat E, Toostani IG. A review on brain stimulation using low intensity focused ultrasound. Basic Clin Neurosci, 2016, 7(3): 187-194. |
31. | Bubrick EJ, McDannold NJ, White PJ. Low intensity focused ultrasound for epilepsy- a new approach to neuromodulation. Epilepsy Curr, 2022, 22(3): 156-160. |
32. | Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett, 2017, 7(2): 135-142. |
33. | Toccaceli G, Barbagallo G, Peschillo S. Low-intensity focused ultrasound for the treatment of brain diseases: safety and feasibility. Theranostics, 2019, 9(2): 537-539. |
34. | Cramer SC. Brain repair after stroke. N Engl J Med, 2010, 362(19): 1827-1829. |
35. | Hummel FC, Celnik P, Pascual-Leone A, et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul, 2008, 1(4): 370-382. |
36. | Li KP, Wu JJ, Zhou ZL, et al. Noninvasive brain stimulation for neurorehabilitation in post-stroke patients. Brain Sci, 2023, 13(3): 451. |
37. | Gomez Palacio Schjetnan A, Faraji J, Metz GA, et al. Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat, 2013, 2013: 170256. |
38. | de Aguiar V, Paolazzi CL, Miceli G. tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex, 2015, 63: 296-316. |
39. | Leon D, Cortes M, Elder J, et al. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci, 2017, 35(4): 377-384. |
40. | Xie X, Hu P, Tian Y, et al. Transcranial alternating current stimulation enhances speech comprehension in chronic post-stroke aphasia patients: a single-blind sham-controlled study. Brain Stimul, 2022, 15(6): 1538-1540. |
41. | Wang H, Zhang W, Zhao W, et al. The efficacy of transcranial alternating current stimulation for treating post-stroke depression: Study Protocol Clinical Trial (SPIRIT compliant). Medicine (Baltimore), 2020, 99(16): e19671. |
42. | Yuan K, Chen C, Lou WT, et al. Differential Effects of 10 and 20 Hz Brain Stimulation in Chronic Stroke: a tACS-fMRI study. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 455-464. |
43. | Schuhmann T, Duecker F, Middag-van Spanje M, et al. Transcranial alternating brain stimulation at alpha frequency reduces hemispatial neglect symptoms in stroke patients. Int J Clin Health Psychol, 2022, 22(3): 100326. |
44. | Zafar A, Quadri SA, Farooqui M, et al. MRI-guided high-intensity focused ultrasound as an emerging therapy for stroke: a review. J Neuroimaging, 2019, 29(1): 5-13. |
45. | Baek H, Pahk KJ, Kim MJ, et al. Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery. Neurorehabil Neural Repair, 2018, 32(9): 777-787. |
46. | Cognitive rehabilitation therapy in traumatic brain injury. Lancet, 2011, 378(9801): 1440. |
47. | Nardone R, Sebastianelli L, Versace V, et al. Repetitive transcranial magnetic stimulation in traumatic brain injury: evidence from animal and human studies. Brain Res Bull, 2020, 159: 44-52. |
48. | Pink AE, Williams C, Alderman N, et al. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): a scoping review. Neuropsychol Rehabil, 2021, 31(3): 479-505. |
49. | Zhang H, Zhao Y, Qu Y, et al. The effect of repetitive transcranial magnetic stimulation (rTMS) on cognition in patients with traumatic brain injury: a protocol for a randomized controlled trial. Front Neurol, 2022, 13: 832818. |
50. | Tsai PY, Chen YC, Wang JY, et al. Effect of repetitive transcranial magnetic stimulation on depression and cognition in individuals with traumatic brain injury: a systematic review and meta-analysis. Sci Rep, 2021, 11(1): 16940. |
51. | Rodrigues PA, Zaninotto AL, Ventresca HM, et al. The effects of repetitive transcranial magnetic stimulation on anxiety in patients with moderate to severe traumatic brain injury: a post-hoc analysis of a randomized clinical trial. Front Neurol, 2020, 11: 564940. |
52. | Zaninotto AL, El-Hagrassy MM, Green JR, et al. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: a systematic review. Dement Neuropsychol, 2019, 13(2): 172-179. |
53. | Kim WS, Lee K, Kim S, et al. Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury. J Neuroeng Rehabil, 2019, 16(1): 14. |
54. | Kang EK, Kim DY, Paik NJ. Transcranial direct current stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: a pilot study. J Rehabil Med, 2012, 44(4): 346-350. |
55. | Eilam-Stock T, George A, Charvet LE. Cognitive telerehabilitation with transcranial direct current stimulation improves cognitive and emotional functioning following a traumatic brain injury: a case study. Arch Clin Neuropsychol, 2021, 36(3): 442-453. |
56. | Ulam F, Shelton C, Richards L, et al. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin Neurophysiol, 2015, 126(3): 486-496. |
57. | Huang L, Kang J, Chen G, et al. Low-intensity focused ultrasound attenuates early traumatic brain injury by OX-A/NF-κB/NLRP3 signaling pathway. Aging (Albany NY), 2022, 14(18): 7455-7469. |
58. | Su WS, Wu CH, Chen SF, et al. Low-intensity pulsed ultrasound improves behavioral and histological outcomes after experimental traumatic brain injury. Sci Rep, 2017, 7(1): 15524. |
59. | Russell CK. On the Parkinsonian syndrome. Can Med Assoc J, 1922, 12(3): 177-178. |
60. | Matsumoto H, Ugawa Y. Repetitive transcranial magnetic stimulation for Parkinson’s disease: a review. Brain Nerve, 2017, 69(3): 219-225. |
61. | Sadler CM, Kami AT, Nantel J, et al. Transcranial direct current stimulation of supplementary motor area improves upper limb kinematics in Parkinson’s disease. Clin Neurophysiol, 2021, 132(11): 2907-2915. |
62. | van den Noort M, Bosch P, Yeo S, et al. Transcranial magnetic stimulation for Parkinson’s disease. Mov Disord, 2015, 30(14): 1973. |
63. | Chung CL, Mak MK, Hallett M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann Neurol, 2020, 88(5): 933-945. |
64. | Chen R. Repetitive transcranial magnetic stimulation as treatment for depression in Parkinson’s disease. Mov Disord, 2010, 25(14): 2272-2273. |
65. | Pol F, Salehinejad MA, Baharlouei H, et al. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: a systematic review. Transl Neurodegener, 2021, 10(1): 22. |
66. | Sadler CM, Kami AT, Nantel J, et al. Transcranial direct current stimulation over motor areas improves reaction time in Parkinson’s disease. Front Neurol, 2022, 13: 913517. |
67. | Zhang B, Huang F, Liu J, et al. Bilateral transcranial direct current stimulation may be a feasible treatment of Parkinsonian tremor. Front Neurosci, 2023, 17: 1101751. |
68. | Workman CD, Fietsam AC, Uc EY, et al. Cerebellar transcranial direct current stimulation in people with Parkinson’s disease: a pilot study. Brain Sci, 2020, 10(2): 96. |
69. | Lin F, Wu D, Yu J, et al. Comparison of efficacy of deep brain stimulation and focused ultrasound in parkinsonian tremor: a systematic review and network meta-analysis. J Neurol Neurosurg Psychiatry, 2021, 18: jnnp-2020-323656. |
70. | Schrag A. Focused ultrasound ablation of the globus pallidus internus for Parkinson’s disease. N Engl J Med, 2023, 388(8): 759-760. |
71. | Lee KS, Clennell B, Steward TGJ, et al. Focused ultrasound stimulation as a neuromodulatory tool for Parkinson’s disease: a scoping review. Brain Sci, 2022, 12(2): 289. |
72. | Shampo MA, Kyle RA, Steensma DP. Alois Alzheimer-Alzheimer disease. Mayo Clin Proc, 2013, 88(12): e155. |
73. | Hodson R. Alzheimer’s disease. Nature, 2018, 559(7715): S1. |
74. | Liao X, Li G, Wang A, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in alzheimer’s disease: a meta-analysis. J Alzheimers Dis, 2015, 48(2): 463-472. |
75. | Wang X, Mao Z, Ling Z, et al. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Neurol, 2020, 267(3): 791-801. |
76. | Bystad M, Rasmussen ID, Abeler K, et al. Accelerated transcranial direct current stimulation in Alzheimer’s disease: a case study. Brain Stimul, 2016, 9(4): 634-635. |
77. | Duan M, Meng Z, Yuan D, et al. Anodal and cathodal transcranial direct current stimulations of prefrontal cortex in a rodent model of Alzheimer’s disease. Front Aging Neurosci, 2022, 14: 968451. |
78. | Liu Y, Tang C, Wei K, et al. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer’s disease: a case report and literature review. Front Neurol, 2022, 13: 962684. |
79. | Bréchet L, Michel CM, Schacter DL, et al. Improving autobiographical memory in Alzheimer’s disease by transcranial alternating current stimulation. Curr Opin Behav Sci, 2021, 40: 64-71. |
80. | Wu L, Cao T, Li S, et al. Long-term gamma transcranial alternating current stimulation improves the memory function of mice with Alzheimer’s disease. Front Aging Neurosci, 2022, 14: 980636. |
81. | Meng Y, Volpini M, Black S, et al. Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Ann Neurol, 2017, 81(5): 611-617. |
82. | Burgess A, Aubert I, Hynynen K. Focused ultrasound: crossing barriers to treat Alzheimer’s disease. Ther Deliv, 2011, 2(3): 281-286. |
83. | Hernandez-Pavon JC, Harvey RL. Noninvasive transcranial magnetic brain stimulation in stroke. Phys Med Rehabil Clin N Am, 2019, 30(2): 319-335. |
84. | Dhaliwal SK, Meek BP, Modirrousta MM. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury. Front Psychiatry, 2015, 6: 119. |
85. | Keshavarzi M, Kegler M, Kadir S, et al. Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise. Neuroimage, 2020, 210: 116557. |
86. | Krishnan C, Santos L, Peterson MD, et al. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul, 2015, 8(1): 76-87. |
87. | Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol, 2016, 127(2): 1031-1048. |
88. | Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol, 2017, 128(9): 1774-1809. |
89. | Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin, 2010, 40(1): 7-17. |
90. | Sprugnoli G, Rossi S, Rotenberg A, et al. Personalised, image-guided, noninvasive brain stimulation in gliomas: rationale, challenges and opportunities. EBioMedicine, 2021, 70: 103514. |
91. | Li Y, Jiang Y, Lan L, et al. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci Appl, 2022, 11(1): 321. |
92. | Chowdhury S, Yamanaka A. Fiberless optogenetics. Adv Exp Med Biol, 2021, 1293: 407-416. |
93. | Subramanian SK, Prasanna SS. Virtual reality and noninvasive brain stimulation in stroke: how effective is their combination for upper limb motor improvement?-a meta-analysis. PM R, 2018, 10(11): 1261-1270. |
- 1. Cambiaghi M, Cordaro M, Dossena S, et al. Editorial: non-invasive brain stimulation techniques in neurological and neuropsychiatric disorders: physiological and molecular evidence. Front Syst Neurosci, 2023, 17: 1128205.
- 2. Fecteau S. Influencing human behavior with noninvasive brain stimulation: direct human brain manipulation revisited. Neuroscientist, 2023, 29(3): 317-331.
- 3. Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turk J Phys Med Rehabil, 2022, 68(1): 1-8.
- 4. Koch G, Caltagirone C. Non-invasive brain stimulation: from brain physiology to clinical opportunity. Neurosci Lett, 2020, 719: 134496.
- 5. Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol, 2019, 160: 559-580.
- 6. Lafleur LP, Tremblay S, Whittingstall K, et al. Assessment of effective connectivity and plasticity with dual-coil transcranial magnetic stimulation. Brain Stimul, 2016, 9(3): 347-355.
- 7. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul, 2013, 6(1): 1-13.
- 8. Deng ZD, Lisanby SH, Peterchev AV. On the stimulation depth of transcranial magnetic stimulation coils. Clin Neurophysiol, 2015, 126(4): 843-844.
- 9. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul, 2014, 7(5): 643-649.
- 10. Harel EV, Zangen A, Roth Y, et al. H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World J Biol Psychiatry, 2011, 12(2): 119-126.
- 11. Klírová M, Laskov O, Renka J, et al. An rTMS-induced seizure during low frequency repetitive transcranial magnetic stimulation with a double-cone coil for spasticity: a case report. Brain Stimul, 2022, 15(5): 1120-1121.
- 12. Chieffo R, De Prezzo S, Houdayer E, et al. Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor function in chronic stroke: a pilot study. Arch Phys Med Rehabil, 2014, 95(6): 1141-1147.
- 13. Guadagnin V, Parazzini M, Liorni I, et al. Modelling of deep transcranial magnetic stimulation: different coil configurations. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 4306-4309.
- 14. King ES, Tang AD. Intrinsic plasticity mechanisms of repetitive transcranial magnetic stimulation. Neuroscientist, 2022, 5: 10738584221118262.
- 15. Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018). Clin Neurophysiol, 2020, 131(2): 474-528.
- 16. Venkatasubramanian G, Narayanaswamy JC. Transcranial direct current stimulation in psychiatry. Lancet Psychiatry, 2019, 6(1): 8-9.
- 17. Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT, 2018, 34(3): 144-152.
- 18. Nitsche MA, Paulus W. Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci, 2011, 29(6): 463-492.
- 19. Priori A, Hallett M, Rothwell JC. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation?. Brain Stimul, 2009, 2(4): 241-245.
- 20. Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci, 2013, 7: 317.
- 21. He Y, Liu S, Chen L, et al. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci, 2023, 17: 1091925.
- 22. Rufener KS, Zaehle T, Oechslin MS, et al. 40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception. Int J Psychophysiol, 2016, 101: 18-24.
- 23. Kehler L, Francisco CO, Uehara MA, et al. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 3649-3653.
- 24. Frohlich F, Riddle J, Abramowitz JS. Transcranial alternating current stimulation for the treatment of obsessive-compulsive disorder?. Brain Stimul, 2021, 14(4): 1048-1050.
- 25. Wang H, Wang K, Xue Q, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain, 2022, 145(1): 83-91.
- 26. Kim S, Jo Y, Kook G, et al. Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimul, 2021, 14(2): 290-300.
- 27. di Biase L, Falato E, Di Lazzaro V. Transcranial focused ultrasound (tFUS) and transcranial unfocused ultrasound (tUS) neuromodulation: from theoretical principles to stimulation practices. Front Neurol, 2019, 10: 549.
- 28. Moosa S, Martínez-Fernández R, Elias WJ, et al. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov Disord, 2019, 34(9): 1243-1251.
- 29. Dababou S, Marrocchio C, Scipione R, et al. High-intensity focused ultrasound for pain management in patients with cancer. Radiographics, 2018, 38(2): 603-623.
- 30. Rezayat E, Toostani IG. A review on brain stimulation using low intensity focused ultrasound. Basic Clin Neurosci, 2016, 7(3): 187-194.
- 31. Bubrick EJ, McDannold NJ, White PJ. Low intensity focused ultrasound for epilepsy- a new approach to neuromodulation. Epilepsy Curr, 2022, 22(3): 156-160.
- 32. Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett, 2017, 7(2): 135-142.
- 33. Toccaceli G, Barbagallo G, Peschillo S. Low-intensity focused ultrasound for the treatment of brain diseases: safety and feasibility. Theranostics, 2019, 9(2): 537-539.
- 34. Cramer SC. Brain repair after stroke. N Engl J Med, 2010, 362(19): 1827-1829.
- 35. Hummel FC, Celnik P, Pascual-Leone A, et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul, 2008, 1(4): 370-382.
- 36. Li KP, Wu JJ, Zhou ZL, et al. Noninvasive brain stimulation for neurorehabilitation in post-stroke patients. Brain Sci, 2023, 13(3): 451.
- 37. Gomez Palacio Schjetnan A, Faraji J, Metz GA, et al. Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat, 2013, 2013: 170256.
- 38. de Aguiar V, Paolazzi CL, Miceli G. tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex, 2015, 63: 296-316.
- 39. Leon D, Cortes M, Elder J, et al. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci, 2017, 35(4): 377-384.
- 40. Xie X, Hu P, Tian Y, et al. Transcranial alternating current stimulation enhances speech comprehension in chronic post-stroke aphasia patients: a single-blind sham-controlled study. Brain Stimul, 2022, 15(6): 1538-1540.
- 41. Wang H, Zhang W, Zhao W, et al. The efficacy of transcranial alternating current stimulation for treating post-stroke depression: Study Protocol Clinical Trial (SPIRIT compliant). Medicine (Baltimore), 2020, 99(16): e19671.
- 42. Yuan K, Chen C, Lou WT, et al. Differential Effects of 10 and 20 Hz Brain Stimulation in Chronic Stroke: a tACS-fMRI study. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 455-464.
- 43. Schuhmann T, Duecker F, Middag-van Spanje M, et al. Transcranial alternating brain stimulation at alpha frequency reduces hemispatial neglect symptoms in stroke patients. Int J Clin Health Psychol, 2022, 22(3): 100326.
- 44. Zafar A, Quadri SA, Farooqui M, et al. MRI-guided high-intensity focused ultrasound as an emerging therapy for stroke: a review. J Neuroimaging, 2019, 29(1): 5-13.
- 45. Baek H, Pahk KJ, Kim MJ, et al. Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery. Neurorehabil Neural Repair, 2018, 32(9): 777-787.
- 46. Cognitive rehabilitation therapy in traumatic brain injury. Lancet, 2011, 378(9801): 1440.
- 47. Nardone R, Sebastianelli L, Versace V, et al. Repetitive transcranial magnetic stimulation in traumatic brain injury: evidence from animal and human studies. Brain Res Bull, 2020, 159: 44-52.
- 48. Pink AE, Williams C, Alderman N, et al. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): a scoping review. Neuropsychol Rehabil, 2021, 31(3): 479-505.
- 49. Zhang H, Zhao Y, Qu Y, et al. The effect of repetitive transcranial magnetic stimulation (rTMS) on cognition in patients with traumatic brain injury: a protocol for a randomized controlled trial. Front Neurol, 2022, 13: 832818.
- 50. Tsai PY, Chen YC, Wang JY, et al. Effect of repetitive transcranial magnetic stimulation on depression and cognition in individuals with traumatic brain injury: a systematic review and meta-analysis. Sci Rep, 2021, 11(1): 16940.
- 51. Rodrigues PA, Zaninotto AL, Ventresca HM, et al. The effects of repetitive transcranial magnetic stimulation on anxiety in patients with moderate to severe traumatic brain injury: a post-hoc analysis of a randomized clinical trial. Front Neurol, 2020, 11: 564940.
- 52. Zaninotto AL, El-Hagrassy MM, Green JR, et al. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: a systematic review. Dement Neuropsychol, 2019, 13(2): 172-179.
- 53. Kim WS, Lee K, Kim S, et al. Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury. J Neuroeng Rehabil, 2019, 16(1): 14.
- 54. Kang EK, Kim DY, Paik NJ. Transcranial direct current stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: a pilot study. J Rehabil Med, 2012, 44(4): 346-350.
- 55. Eilam-Stock T, George A, Charvet LE. Cognitive telerehabilitation with transcranial direct current stimulation improves cognitive and emotional functioning following a traumatic brain injury: a case study. Arch Clin Neuropsychol, 2021, 36(3): 442-453.
- 56. Ulam F, Shelton C, Richards L, et al. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin Neurophysiol, 2015, 126(3): 486-496.
- 57. Huang L, Kang J, Chen G, et al. Low-intensity focused ultrasound attenuates early traumatic brain injury by OX-A/NF-κB/NLRP3 signaling pathway. Aging (Albany NY), 2022, 14(18): 7455-7469.
- 58. Su WS, Wu CH, Chen SF, et al. Low-intensity pulsed ultrasound improves behavioral and histological outcomes after experimental traumatic brain injury. Sci Rep, 2017, 7(1): 15524.
- 59. Russell CK. On the Parkinsonian syndrome. Can Med Assoc J, 1922, 12(3): 177-178.
- 60. Matsumoto H, Ugawa Y. Repetitive transcranial magnetic stimulation for Parkinson’s disease: a review. Brain Nerve, 2017, 69(3): 219-225.
- 61. Sadler CM, Kami AT, Nantel J, et al. Transcranial direct current stimulation of supplementary motor area improves upper limb kinematics in Parkinson’s disease. Clin Neurophysiol, 2021, 132(11): 2907-2915.
- 62. van den Noort M, Bosch P, Yeo S, et al. Transcranial magnetic stimulation for Parkinson’s disease. Mov Disord, 2015, 30(14): 1973.
- 63. Chung CL, Mak MK, Hallett M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann Neurol, 2020, 88(5): 933-945.
- 64. Chen R. Repetitive transcranial magnetic stimulation as treatment for depression in Parkinson’s disease. Mov Disord, 2010, 25(14): 2272-2273.
- 65. Pol F, Salehinejad MA, Baharlouei H, et al. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: a systematic review. Transl Neurodegener, 2021, 10(1): 22.
- 66. Sadler CM, Kami AT, Nantel J, et al. Transcranial direct current stimulation over motor areas improves reaction time in Parkinson’s disease. Front Neurol, 2022, 13: 913517.
- 67. Zhang B, Huang F, Liu J, et al. Bilateral transcranial direct current stimulation may be a feasible treatment of Parkinsonian tremor. Front Neurosci, 2023, 17: 1101751.
- 68. Workman CD, Fietsam AC, Uc EY, et al. Cerebellar transcranial direct current stimulation in people with Parkinson’s disease: a pilot study. Brain Sci, 2020, 10(2): 96.
- 69. Lin F, Wu D, Yu J, et al. Comparison of efficacy of deep brain stimulation and focused ultrasound in parkinsonian tremor: a systematic review and network meta-analysis. J Neurol Neurosurg Psychiatry, 2021, 18: jnnp-2020-323656.
- 70. Schrag A. Focused ultrasound ablation of the globus pallidus internus for Parkinson’s disease. N Engl J Med, 2023, 388(8): 759-760.
- 71. Lee KS, Clennell B, Steward TGJ, et al. Focused ultrasound stimulation as a neuromodulatory tool for Parkinson’s disease: a scoping review. Brain Sci, 2022, 12(2): 289.
- 72. Shampo MA, Kyle RA, Steensma DP. Alois Alzheimer-Alzheimer disease. Mayo Clin Proc, 2013, 88(12): e155.
- 73. Hodson R. Alzheimer’s disease. Nature, 2018, 559(7715): S1.
- 74. Liao X, Li G, Wang A, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in alzheimer’s disease: a meta-analysis. J Alzheimers Dis, 2015, 48(2): 463-472.
- 75. Wang X, Mao Z, Ling Z, et al. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Neurol, 2020, 267(3): 791-801.
- 76. Bystad M, Rasmussen ID, Abeler K, et al. Accelerated transcranial direct current stimulation in Alzheimer’s disease: a case study. Brain Stimul, 2016, 9(4): 634-635.
- 77. Duan M, Meng Z, Yuan D, et al. Anodal and cathodal transcranial direct current stimulations of prefrontal cortex in a rodent model of Alzheimer’s disease. Front Aging Neurosci, 2022, 14: 968451.
- 78. Liu Y, Tang C, Wei K, et al. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer’s disease: a case report and literature review. Front Neurol, 2022, 13: 962684.
- 79. Bréchet L, Michel CM, Schacter DL, et al. Improving autobiographical memory in Alzheimer’s disease by transcranial alternating current stimulation. Curr Opin Behav Sci, 2021, 40: 64-71.
- 80. Wu L, Cao T, Li S, et al. Long-term gamma transcranial alternating current stimulation improves the memory function of mice with Alzheimer’s disease. Front Aging Neurosci, 2022, 14: 980636.
- 81. Meng Y, Volpini M, Black S, et al. Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Ann Neurol, 2017, 81(5): 611-617.
- 82. Burgess A, Aubert I, Hynynen K. Focused ultrasound: crossing barriers to treat Alzheimer’s disease. Ther Deliv, 2011, 2(3): 281-286.
- 83. Hernandez-Pavon JC, Harvey RL. Noninvasive transcranial magnetic brain stimulation in stroke. Phys Med Rehabil Clin N Am, 2019, 30(2): 319-335.
- 84. Dhaliwal SK, Meek BP, Modirrousta MM. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury. Front Psychiatry, 2015, 6: 119.
- 85. Keshavarzi M, Kegler M, Kadir S, et al. Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise. Neuroimage, 2020, 210: 116557.
- 86. Krishnan C, Santos L, Peterson MD, et al. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul, 2015, 8(1): 76-87.
- 87. Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol, 2016, 127(2): 1031-1048.
- 88. Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol, 2017, 128(9): 1774-1809.
- 89. Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin, 2010, 40(1): 7-17.
- 90. Sprugnoli G, Rossi S, Rotenberg A, et al. Personalised, image-guided, noninvasive brain stimulation in gliomas: rationale, challenges and opportunities. EBioMedicine, 2021, 70: 103514.
- 91. Li Y, Jiang Y, Lan L, et al. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci Appl, 2022, 11(1): 321.
- 92. Chowdhury S, Yamanaka A. Fiberless optogenetics. Adv Exp Med Biol, 2021, 1293: 407-416.
- 93. Subramanian SK, Prasanna SS. Virtual reality and noninvasive brain stimulation in stroke: how effective is their combination for upper limb motor improvement?-a meta-analysis. PM R, 2018, 10(11): 1261-1270.
-
Previous Article
Challenge of digital medicine to geriatric rehabilitation -
Next Article
Botulinum toxin A injection for neurogenic bladder