1. |
Hanly JG, O’Keeffe AG, Su L, et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology (Oxford), 2016, 55(2): 252-262.
|
2. |
Maria NI, Davidson A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat Rev Rheumatol, 2020, 16(5): 255-267.
|
3. |
Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13, 519 renal biopsies. Kidney Int, 2004, 66(3): 920-923.
|
4. |
Faurschou M, Dreyer L, Kamper AL, et al. Long-term mortality and renal outcome in a cohort of 100 patients with lupus nephritis. Arthritis Care Res (Hoboken), 2010, 62(6): 873-880.
|
5. |
Wang LH, Wang WM, Lin SH, et al. Bidirectional relationship between systemic lupus erythematosus and non-Hodgkin’s lymphoma: a nationwide population-based study. Rheumatology (Oxford), 2019, 58(7): 1245-1249.
|
6. |
Gayed M, Bernatsky S, Ramsey-Goldman R, et al. Lupus and cancer. Lupus, 2009, 18(6): 479-485.
|
7. |
Mugnaini EN, Ghosh N. Lymphoma. Prim Care, 2016, 43(4): 661-675.
|
8. |
Armitage JO, Gascoyne RD, Lunning MA, et al. Non-Hodgkin lymphoma. Lancet, 2017, 390(10091): 298-310.
|
9. |
Mellemkjaer L, Andersen V, Linet MS, et al. Non-Hodgkin’s lymphoma and other cancers among a cohort of patients with systemic lupus erythematosus. Arthritis Rheum, 1997, 40(4): 761-768.
|
10. |
Boddu P, Mohammed AS, Annem C, et al. SLE and non-Hodgkin’s lymphoma: a case series and review of the literature. Case Rep Rheumatol, 2017, 2017: 1658473.
|
11. |
Ouyang S, Liu Y, Xiao C, et al. Identification of latent diagnostic biomarkers and biological pathways in dermatomyositis based on WGCNA. J Oncol, 2021, 2021: 1920111.
|
12. |
Bian W, Wang Z, Li X, et al. Identification of vital modules and genes associated with heart failure based on weighted gene coexpression network analysis. ESC Heart Fail, 2022, 9(2): 1370-1379.
|
13. |
Zhou J, Zhang W, Wei C, et al. Weighted correlation network bioinformatics uncovers a key molecular biosignature driving the left-sided heart failure. BMC Med Genomics, 2020, 13(1): 93.
|
14. |
McEligot AJ, Poynor V, Sharma R, et al. Logistic LASSO regression for dietary intakes and breast cancer. Nutrients, 2020, 12(9): 2652.
|
15. |
Zhu YX, Huang JQ, Ming YY, et al. Screening of key biomarkers of tendinopathy based on bioinformatics and machine learning algorithms. PLoS One, 2021, 16(10): e0259475.
|
16. |
Hanko M, Grendár M, Snopko P, et al. Random forest-based prediction of outcome and mortality in patients with traumatic brain injury undergoing primary decompressive craniectomy. World Neurosurg, 2021, 148: e450-e458.
|
17. |
Cao J, Liu Z, Liu J, et al. Bioinformatics analysis and identification of genes and pathways in ischemic cardiomyopathy. Int J Gen Med, 2021, 14: 5927-5937.
|
18. |
Jiang Y, Chen L, Chao Z, et al. Ferroptosis related genes in ischemic and idiopathic cardiomyopathy: screening for potential pharmacological targets. Front Cell Dev Biol, 2022, 10: 817819.
|
19. |
Song H, Chen S, Zhang T, et al. Integrated strategies of diverse feature selection methods identify aging-based reliable gene signatures for ischemic cardiomyopathy. Front Mol Biosci, 2022, 9: 805235.
|
20. |
Xia M, Liu CJ, Zhang Q, et al. GEDS: a gene expression display server for mRNAs, miRNAs and proteins. Cells, 2019, 8(7): 675.
|
21. |
Raimbourg Q, Daugas É. Lupus nephritis. Nephrol Ther, 2019, 15(3): 174-189.
|
22. |
Anders HJ, Saxena R, Zhao MH, et al. Lupus nephritis. Nat Rev Dis Primers, 2020, 6(1): 7.
|
23. |
Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med, 2020, 172(11): ITC81-ITC96.
|
24. |
Kong F, Yan Z, Lan N, et al. Construction and validation of gastric cancer diagnosis model based on machine learning. Explor Med, 2022, 3: 300-313.
|
25. |
Li YR, Meng K, Yang G, et al. Diagnostic genes and immune infiltration analysis of colorectal cancer determined by LASSO and SVM machine learning methods: a bioinformatics analysis. J Gastrointest Oncol, 2022, 13(3): 1188-1203.
|
26. |
Liu J, Liu L, Antwi PA, et al. Identification and validation of the diagnostic characteristic genes of ovarian cancer by bioinformatics and machine learning. Front Genet, 2022, 13: 858466.
|
27. |
Lai YL, Liu CH, Wang SC, et al. Identification of a steroid hormone-associated gene signature predicting the prognosis of prostate cancer through an integrative bioinformatics analysis. Cancers (Basel), 2022, 14(6): 1565.
|
28. |
Jiang Z, Shao M, Dai X, et al. Identification of diagnostic biomarkers in systemic lupus erythematosus based on bioinformatics analysis and machine learning. Front Genet, 2022, 13: 865559.
|
29. |
Zhou Y, Shi W, Zhao D, et al. Identification of immune-associated genes in diagnosing aortic valve calcification with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol, 2022, 13: 937886.
|
30. |
Xiong T, Han S, Pu L, et al. Bioinformatics and machine learning methods to identify fn1 as a novel biomarker of aortic valve calcification. Front Cardiovasc Med, 2022, 9: 832591.
|
31. |
Li C, Tian C, Zeng Y, et al. Machine learning and bioinformatics analysis revealed classification and potential treatment strategy in stage 3-4 NSCLC patients. BMC Med Genomics, 2022, 15(1): 33.
|
32. |
Kalafi EY, Nor NAM, Taib NA, et al. Machine learning and deep learning approaches in breast cancer survival prediction using clinical data. Folia Biol (Praha), 2019, 65(5/6): 212-220.
|
33. |
Kwakkenbos MJ, Kop EN, Stacey M, et al. The EGF-TM7 family: a postgenomic view. Immunogenetics, 2004, 55(10): 655-666.
|
34. |
Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA, 2007, 13(1): 87-96.
|
35. |
Bernatsky S, Ramsey-Goldman R, Joseph L, et al. Lymphoma risk in systemic lupus: effects of disease activity versus treatment. Ann Rheum Dis, 2014, 73(1): 138-142.
|