1. |
Felipe FA, de Carvalho FO, Silva ÉR, et al. Evaluation instruments for physical therapy using virtual reality in stroke patients: a systematic review. Physiotherapy, 2020, 106: 194-210.
|
2. |
张文波, 瞿畅, 周建萍, 等. 基于 Azure Kinect 骨骼追踪的腕关节活动度测量方法. 中国康复理论与实践, 2022, 28(8): 981-988.
|
3. |
柯技, 单良, 王树法, 等. 胫骨平台骨折伤残鉴定的回顾性研究. 中国刑警学院学报, 2020(2): 114-118.
|
4. |
Brosseau L, Tousignant M, Budd J, et al. Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int, 1997, 2(3): 150-166.
|
5. |
Leightley D, McPhee JS, Yap MH. Automated analysis and quantification of human mobility using a depth sensor. IEEE J Biomed Health Inform, 2017, 21(4): 939-948.
|
6. |
Ballesteros J, Urdiales C, Martinez AB, et al. Automatic assessment of a rollator-user’s condition during rehabilitation using the i-walker platform. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(11): 2009-2017.
|
7. |
Delrobaei M, Baktash N, Gilmore G, et al. Using wearable technology to generate objective parkinson's disease dyskinesia severity score: possibilities for home monitoring. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(10): 1853-1863.
|
8. |
Motiian S, Pergami P, Guffey K, et al. Automated extraction and validation of children's gait parameters with the Kinect. Biomed Eng Online, 2015, 14: 112.
|
9. |
Albert JA, Owolabi V, Gebel A, et al. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: a pilot study. Sensors (Basel), 2020, 20(18): 5104.
|
10. |
da Cunha Neto JS, Rebouças Filho PP, Silva G, et al. Dynamic evaluation and treatment of the movement amplitude using Kinect sensor. IEEE Access, 2018(99): 1.
|
11. |
李培丰, 林愉添, 朱君毅, 等. 一种新的智能手机应用程序 AR 尺子测量腕关节活动度的可靠性和同时效度评估. 中华手外科杂志, 2020, 36(6): 425-429.
|
12. |
Kennedy DL, Kemp HI, Ridout D, et al. Reliability of conditioned pain modulation: a systematic review. Pain, 2016, 157(11): 2410-2419.
|
13. |
van Trijffel E, van de Pol RJ, Oostendorp RA, et al. Inter-rater reliability for measurement of passive physiological movements in lower extremity joints is generally low: a systematic review. J Physiother, 2010, 56(4): 223-235.
|
14. |
van de Pol RJ, van Trijffel E, Lucas C. Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: a systematic review. J Physiother, 2010, 56(1): 7-17.
|
15. |
Gajdosik RL. Comparison and reliability of three goniometric methods for measuring forearm supination and pronation. Percept Mot Skills, 2001, 93(2): 353-355.
|
16. |
陶莉, 戴昂, 郭险峰. 多功能脊柱稳定性康复系统评估模块对于躯干肌力评估的效度和信度研究. 中国康复医学杂志, 2020, 35(10): 1217-1220.
|
17. |
de Sire A, Losco L, Cigna E, et al. Three-dimensional laser scanning as a reliable and reproducible diagnostic tool in breast cancer related lymphedema rehabilitation: a proof-of-principle study. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4476-4485.
|
18. |
Lee WW, Yen SC, Tay A, et al. A smartphone-centric system for the range of motion assessment in stroke patients. IEEE J Biomed Health Inform, 2014, 18(6): 1839-1847.
|
19. |
王杰. 关节活动度评定系统的设计与实现. 保定: 河北大学, 2017: 68.
|
20. |
王伟伟, 郭远其, 高卉, 等. 基于深度图像的关节活动度测量及其结果评价. 中国医学物理学杂志, 2016, 33(3): 262-269.
|
21. |
瞿畅, 丁晨, 王君泽, 等. 基于 Kinect 体感交互技术的上肢关节活动度测量方法. 中国生物医学工程学报, 2014, 33(1): 16-21.
|
22. |
张艳, 徐瑞璟, 李卓颖. 基于 3D 建模指关节活动度测量的研发及应用. 循证护理, 2023, 9(12): 2278-2280.
|
23. |
严广斌. 关节活动度(Range of motion, ROM). 中华关节外科杂志(电子版), 2014(3): 409.
|
24. |
Wagner ER, Conti Mica M, Shin AY. Smartphone photography utilized to measure wrist range of motion. J Hand Surg Eur Vol, 2018, 43(2): 187-192.
|
25. |
Kurillo G, Han JJ, Obdržálek S, et al. Upper extremity reachable workspace evaluation with Kinect. Stud Health Technol Inform, 2013, 184: 247-253.
|