1. |
Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet, 2013, 382(9888): 260-272.
|
2. |
Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol, 2018, 80: 309-326.
|
3. |
李磊, 夏煜琦, 程帆. 铁死亡在肾纤维化中的作用研究进展. 疑难病杂志, 2022, 21(8): 872-876.
|
4. |
Wang J, Wang Y, Liu Y, et al. Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov, 2022, 8(1): 127.
|
5. |
Zhou L, Xue X, Hou Q, et al. Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel), 2021, 8(1): 57-71.
|
6. |
刘义琴, 朱婷婷, 毛海霞, 等. 腺嘌呤诱导慢性肾病大鼠模型肾纤维化过程中铁死亡相关因子的变化. 中国比较医学杂志, 2023, 33(7): 85-91.
|
7. |
Joachim JH, Mehta KJ. Hepcidin in hepatocellular carcinoma. Br J Cancer, 2022, 127(2): 185-192.
|
8. |
Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci, 2021, 22(12): 6493.
|
9. |
Wang J, Liu W, Li JC, et al. Hepcidin downregulation correlates with disease aggressiveness and immune infiltration in liver cancers. Front Oncol, 2021, 11: 714756.
|
10. |
Cheng K, Huang Y, Wang C. 1, 25(OH)2D3 inhibited ferroptosis in zebrafish liver cells (ZFL) by regulating keap1-Nrf2-GPx4 and NF-κB-hepcidin axis. Int J Mol Sci, 2021, 22(21): 11334.
|
11. |
Sun YB, Qu X, Caruana G, et al. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation, 2016, 92(3): 102-107.
|
12. |
Nastase MV, Zeng-Brouwers J, Wygrecka M, et al. Targeting renal fibrosis: mechanisms and drug delivery systems. Adv Drug Deliv Rev, 2018, 129: 295-307.
|
13. |
Diwan V, Brown L, Gobe GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton), 2018, 23(1): 5-11.
|
14. |
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
|
15. |
Liu P, Wang W, Li Z, et al. Ferroptosis: a new regulatory mechanism in osteoporosis. Oxid Med Cell Longev, 2022, 2022: 2634431.
|
16. |
Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol, 2017, 28(1): 218-229.
|
17. |
Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A, 2019, 116(7): 2672-2680.
|
18. |
Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol, 2020, 888: 173574.
|
19. |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
20. |
Gammella E, Correnti M, Cairo G, et al. Iron availability in tissue microenvironment: the key role of ferroportin. Int J Mol Sci, 2021, 22(6): 2986.
|
21. |
Peters HP, Laarakkers CM, Swinkels DW, et al. Serum hepcidin-25 levels in patients with chronic kidney disease are independent of glomerular filtration rate. Nephrol Dial Transplant, 2010, 25(3): 848-853.
|
22. |
Lai B, Wu CH, Wu CY, et al. Ferroptosis and autoimmune diseases. Front Immunol, 2022, 13: 916664.
|
23. |
Xiao Z, Kong B, Fang J, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered, 2021, 12(2): 9367-9376.
|
24. |
Gotardo ÉM, Ribeiro Gde A, Clemente TR, et al. Hepcidin expression in colon during trinitrobenzene sulfonic acid-induced colitis in rats. World J Gastroenterol, 2014, 20(15): 4345-4352.
|
25. |
徐秋郁, 陈罡, 李雪梅. Erythroferrone 在铁代谢与肾性贫血中的研究进展. 中华肾脏病杂志, 2023, 39(12): 951-956.
|
26. |
Lv W, Booz GW, Wang Y, et al. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol, 2018, 820: 65-76.
|
27. |
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol, 2019, 15(3): 144-158.
|