1. |
Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small, 2016, 12(34): 4611-4632.
|
2. |
Eryildiz M. Fabrication of drug-loaded 3D-printed bone scaffolds with radial gradient porosity. J Mater Eng Perform, 2022, 10(19): 32.
|
3. |
Sahu KK, Modi YK. Multi response optimization for compressive strength, porosity and dimensional accuracy of binder jetting 3D printed ceramic bone scaffolds. Ceram Int, 2022, 48(18): 26772-26783.
|
4. |
Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol, 2020, 877: 173090.
|
5. |
Civantos A, Martinez-Campos E, Ramos V, et al. Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng, 2017, 3(7): 1245-1261.
|
6. |
Memarian P, Sartor F, Bernardo E, et al. Osteogenic properties of 3D-printed silica-carbon-calcite composite scaffolds: novel approach for personalized bone tissue regeneration. Int J Mol Sci, 2021, 22(2): 475.
|
7. |
Zafar MJ, Zhu D, Zhang Z. 3D printing of bioceramics for bone tissue engineering. Materials (Basel), 2019, 12(20): 3361.
|
8. |
Suto M, Nemoto E, Kanaya S, et al. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol, 2013, 58(8): 1021-1028.
|
9. |
Ozeki K, Aoki H, Fukui Y. The effect of adsorbed vitamin D and K to hydroxyapatite on ALP activity of MC3T3-E1 cell. J Mater Sci Mater Med, 2008, 19(4): 1753-1757.
|
10. |
Esposito Corcione C, Gervaso F, Scalera F, et al. 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. j Polym Eng, 2017, 37(8): 741-746.
|
11. |
Kosik-Koziol A, Costantini M, Mroz A, et al. 3D bioprinted hydrogel model incorporating beta-tricalcium phosphate for calcified cartilage tissue engineering. Biofabrication, 2019, 11(3): 35016.
|
12. |
沈红裕, 宋珂. 双相磷酸钙陶瓷在口腔种植的应用及研究进展. 口腔医学研究, 2022, 38(5): 404-407.
|
13. |
姜达君, 贾伟涛, 张长青. 生物玻璃在骨修复中的研究进展. 中国修复重建外科杂志, 2017, 31(12): 1512-1516.
|
14. |
Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel), 2010, 3(7): 3867-3910.
|
15. |
Simorgh S, Alasvand N, Khodadadi M, et al. Additive manufacturing of bioactive glass biomaterials. Methods, 2022, 208: 75-91.
|
16. |
Ding Y, Liu X, Zhang J, et al. 3D printing polylactic acid polymer-bioactive glass loaded with bone cement for bone defect in weight-bearing area. Front Bioeng Biotechnol, 2022, 10: 947521.
|
17. |
Kim BS, Jang J, Chae S, et al. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication, 2016, 8(3): 35013.
|
18. |
Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev, 2016, 107: 17-46.
|
19. |
Mei F, Peng Y, Lu S, et al. Synthesis and characterization of biodegradable poly(lactic-co-glycolic acid). J Macromol Sci B, 2015, 54(5): 562-570.
|
20. |
Schliecker G, Schmidt C, Fuchs S, et al. Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials, 2003, 24(21): 3835-3844.
|
21. |
Babilotte J, Martin B, Guduric V, et al. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111334.
|
22. |
Panayotov IV, Orti V, Cuisinier F, et al. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med, 2016, 27(7): 118.
|
23. |
Qi D, Wang N, Wang S, et al. High-strength porous polyetheretherketone/hydroxyapatite composite for the treatment of bone defect. Compos Commun, 2023, 38: 101473.
|
24. |
唐鹿. 3D 打印聚酰胺材料的研究进展. 化工新型材料, 2021, 49(1): 28-31.
|
25. |
Zhang Y, Deng X, Jiang D, et al. Long-term results of anterior cervical corpectomy and fusion with nano-hydroxyapatite/polyamide 66 strut for cervical spondylotic myelopathy. Sci Rep, 2016, 6: 26751.
|
26. |
Li J, Hsu Y, Luo E, et al. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthetic Plast Surg, 2011, 35(4): 636-640.
|
27. |
Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater, 2018, 3(3): 278-314.
|
28. |
Bandyopadhyay A, Mitra I, Bose S. 3D printing for bone regeneration. Curr Osteoporos Rep, 2020, 18(5): 505-514.
|
29. |
Garzon-Hernandez S, Arias A, Garcia-Gonzalez D. A continuum constitutive model for FDM 3D printed thermoplastics. Compos B Eng, 2020, 201: 108373.
|
30. |
Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, et al. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater, 2014, 3: 61-102.
|
31. |
Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev, 2017, 117(15): 10212-10290.
|
32. |
Manzoor F, Golbang A, Jindal S, et al. 3D printed PEEK/HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential. J Mech Behav Biomed Mater, 2021, 121: 104601.
|
33. |
Wang WZ, Zhang BQ, Li MX, et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos B Eng, 2021, 224: 10192.
|
34. |
Charoo NA, Barakh Ali SF, Mohamed EM, et al. Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications. Drug Dev Ind Pharm, 2020, 46(6): 869-877.
|
35. |
Fina F, Madla CM, Goyanes A, et al. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm, 2018, 541(1/2): 101-107.
|
36. |
Feng P, Qiu X, Yang L, et al. Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold. Colloids Surf B Biointerfaces, 2022, 217: 112668.
|
37. |
Martin-Montal J, Pernas-Sanchez J, Varas D. Experimental characterization framework for SLA additive manufacturing materials. Polymers (Basel), 2021, 13(7): 1147.
|
38. |
Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121-6130.
|
39. |
Lee E, Sim J, Kweon H, et al. Determination of process parameters in stereolithography using neural network. J Mech Sci Technol, 2004, 18(3): 443-452.
|
40. |
Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J Mater Sci Mater Med, 2014, 25(3): 845-856.
|
41. |
Kim K, Yeatts A, Dean D, et al. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev, 2010, 16(5): 523-539.
|
42. |
Tsang CHA, Zhakeyev A, Leung DYC, et al. GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography. Front Chem Sci Eng, 2019, 13(4): 736-743.
|
43. |
Guillaume O, Geven MA, Sprecher CM, et al. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater, 2017, 54: 386-398.
|
44. |
Bai L, Gong C, Chen W, et al. Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals (Basel), 2019, 9(9): 1004.
|
45. |
Zhao Y, Chen H, Ran K, et al. Porous hydroxyapatite scaffold orchestrated with bioactive coatings for rapid bone repair. Biomater Adv, 2023, 144: 213202.
|
46. |
Hou J, Gao H, Wang Y, et al. Effect of mineralized layer topographies on stem cell behavior in microsphere scaffold. J Mater Sci, 2016, 32(9): 971-977.
|
47. |
Lu RJ, Wang X, He HX, et al. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. J Mater Sci Mater Med, 2019, 30(10): 111.
|
48. |
Auclair-Daigle C, Bureau MN, Legoux JG, et al. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A, 2005, 73(4): 398-408.
|
49. |
Wu C, Zeng B, Shen D, et al. Biomechanical and osteointegration study of 3D-printed porous PEEK hydroxyapatite-coated scaffolds. J Biomater Sci Polym Ed, 2023, 34(4): 435-448.
|
50. |
Lett A, Sagadevan S, Paiman S, et al. Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material for the implants. J Mater Res Technol, 2020, 9(6): 12824-12833.
|
51. |
Liu Y, Zhang Z, Lv H, et al. Surface modification of chitosan film via polydopamine coating to promote biomineralization in bone tissue engineering. J Bioact Compat Polym, 2018, 33(2): 134-145.
|
52. |
Zhao X, Han Y, Li J, et al. BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. Mater Sci Eng C Mater Biol Appl, 2017, 78: 658-666.
|
53. |
Wang W, Yeung K. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater, 2017, 2(4): 224-247.
|
54. |
Huang B, Yuan Y, Liu C. Biomaterial-guided immobilization and osteoactivity of bone morphogenetic protein-2. Appl Mater Today, 2020, 19: 100599.
|
55. |
Sun Z, Ouyang L, Ma X, et al. Controllable and durable release of BMP-2-loaded 3D porous sulfonated polyetheretherketone (PEEK) for osteogenic activity enhancement. Colloids Surf B Biointerfaces, 2018, 171: 668-674.
|
56. |
Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development, 2016, 143(15): 2706-2715.
|
57. |
Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone, 2016, 91: 30-38.
|
58. |
Yu H, Zeng X, Deng C, et al. Exogenous VEGF introduced by bioceramic composite materials promotes the restoration of bone defect in rabbits. Biomed Pharmacother, 2018, 98: 325-332.
|
59. |
Aspenberg P. Annotation: parathyroid hormone and fracture healing. Acta Orthop, 2013, 84(1): 4-6.
|
60. |
Jiang L, Zhang W, Wei L, et al. Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats. Biomaterials, 2018, 179: 15-28.
|
61. |
Lombardi G, Ziemann E, Banfi G, et al. Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. Int J Mol Sci, 2020, 21(15): 5388.
|
62. |
Liang B, Huang J, Xu J, et al. Local delivery of a novel PTHrP via mesoporous bioactive glass scaffolds to improve bone regeneration in a rat posterolateral spinal fusion model. RSC advances, 2018, 8(22): 12484-12493.
|