1. |
World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organisation, 2022.
|
2. |
Kathamuthu GR, Kumar NP, Moideen K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are potential biomarkers of pulmonary and extra-pulmonary tuberculosis. Front Immunol, 2020, 11: 419.
|
3. |
Kumar NP, Moideen K, Nancy A, et al. Association of plasma matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase levels with adverse treatment outcomes among patients with pulmonary tuberculosis. JAMA Netw Open, 2020, 3(12): e2027754.
|
4. |
Walker NF, Karim F, Moosa MYS, et al. Elevated plasma matrix metalloproteinase 8 associates with sputum culture positivity in pulmonary tuberculosis. J Infect Dis, 2022, 226(5): 928-932.
|
5. |
Tiwari D, Martineau AR. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol, 2023, 65: 101672.
|
6. |
Miow QH, Vallejo AF, Wang Y, et al. Doxycycline host-directed therapy in human pulmonary tuberculosis. J Clin Invest, 2021, 131(15): e141895.
|
7. |
Christopoulou ME, Papakonstantinou E, Stolz D. Matrix metalloproteinases in chronic obstructive pulmonary disease. Int J Mol Sci, 2023, 24(4): 3786.
|
8. |
Duan C, Yu X, Feng X, et al. Expression profiles of matrix metalloproteinases and their inhibitors in nasal polyps. J Inflamm Res, 2024, 17: 29-39.
|
9. |
Li Y, Wang W, Li L, et al. MMPs and ADAMs/ADAMTS inhibition therapy of abdominal aortic aneurysm. Life Sci, 2020, 253: 117659.
|
10. |
Muñoz-Sáez E, Moracho N, Learte AIR, et al. Dynamic expression of membrane type 1-matrix metalloproteinase (Mt1-mmp/Mmp14) in the mouse embryo. Cells, 2021, 10(9): 2448.
|
11. |
Shang W, Wang Y, Liang X, et al. SETDB1 promotes gastric carcinogenesis and metastasis via upregulation of CCND1 and MMP9 expression. J Pathol, 2021, 253(2): 148-159.
|
12. |
陆霓虹, 孙娅萍, 金媛, 等. 早期分泌抗原靶6及基质金属蛋白酶9评估结核性毁损肺严重程度的应用价值. 中国防痨杂志, 2021, 43(2): 139-142.
|
13. |
Shanmugasundaram K, Talwar A, Madan K, et al. Pulmonary functions and inflammatory biomarkers in post-pulmonary tuberculosis sequelae. Tuberc Respir Dis (Seoul), 2022, 85(2): 175-184.
|
14. |
Santoso A, Rasiha R, Zainal ATF, et al. Transforming growth factor-β and matrix metalloproteinases as potential biomarkers of fibrotic lesions induced by tuberculosis: a systematic review and meta-analysis. BMJ Open, 2023, 13(10): e070377.
|
15. |
Brilha S, Wysoczanski R, Whittington AM, et al. Monocyte adhesion, migration, and extracellular matrix breakdown are regulated by integrin αVβ3 in Mycobacterium tuberculosis infection. J Immunol, 2017, 199(3): 982-991.
|
16. |
Rohlwink UK, Walker NF, Ordonez AA, et al. Matrix metalloproteinases in pulmonary and central nervous system tuberculosis-a review. Int J Mol Sci, 2019, 20(6): 1350.
|
17. |
Volkman HE, Pozos TC, Zheng J, et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science, 2010, 327(5964): 466-469.
|
18. |
Song L, Zhang D, Wang H, et al. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front Microbiol, 2024, 14: 1301141.
|
19. |
Sabir N, Hussain T, Mangi MH, et al. Matrix metalloproteinases: expression, regulation and role in the immunopathology of tuberculosis. Cell Prolif, 2019, 52(4): e12649.
|
20. |
Taylor JL, Hattle JM, Dreitz SA, et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect Immun, 2006, 74(11): 6135-6144.
|
21. |
Subbian S, Tsenova L, O’Brien P, et al. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am J Pathol, 2011, 179(1): 289-301.
|
22. |
Mehra S, Pahar B, Dutta NK, et al. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One, 2010, 5(8): e12266.
|
23. |
Kübler A, Luna B, Larsson C, et al. Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J Pathol, 2015, 235(3): 431-444.
|
24. |
Parasa VR, Muvva JR, Rose JF, et al. Inhibition of tissue matrix metalloproteinases interferes with Mycobacterium tuberculosis-induced granuloma formation and reduces bacterial load in a human lung tissue model. Front Microbiol, 2017, 8: 2370.
|
25. |
Herrera MT, Guzmán-Beltrán S, Bobadilla K, et al. Human pulmonary tuberculosis: understanding the immune response in the bronchoalveolar system. Biomolecules, 2022, 12(8): 1148.
|
26. |
Muefong CN, Owolabi O, Donkor S, et al. Major neutrophil-derived soluble mediators associate with baseline lung pathology and post-treatment recovery in tuberculosis patients. Front Immunol, 2021, 12: 740933.
|
27. |
Albuquerque VVS, Kumar NP, Fukutani KF, et al. Plasma levels of C-reactive protein, matrix metalloproteinase-7 and lipopolysaccharide-binding protein distinguish active pulmonary or extrapulmonary tuberculosis from uninfected controls in children. Cytokine, 2019, 123: 154773.
|
28. |
Sengupta S, Pattanaik KP, Mishra S, et al. Epigenetic orchestration of host immune defences by Mycobacterium tuberculosis. Microbiol Res, 2023, 273: 127400.
|
29. |
刘莉, 马沁梅, 于嘉霖, 等. 基质金属蛋白酶对结核肉芽肿形成及免疫调控作用的研究进展. 中国病理生理杂志, 2022, 38(6): 1113-1119.
|
30. |
Amaral EP, Vinhaes CL, Oliveira-de-Souza D, et al. The interplay between systemic inflammation, oxidative stress, and tissue remodeling in tuberculosis. Antioxid Redox Signal, 2021, 34(6): 471-485.
|
31. |
Ong CW, Elkington PT, Friedland JS. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases. Am J Respir Crit Care Med, 2014, 190(1): 9-18.
|
32. |
Moores RC, Brilha S, Schutgens F, et al. Epigenetic regulation of matrix metalloproteinase-1 and -3 expression in Mycobacterium tuberculosis infection. Front Immunol, 2017, 8: 602.
|
33. |
Elkington PT, Ugarte-Gil CA, Friedland JS. Matrix metalloproteinases in tuberculosis. Eur Respir J, 2011, 38(2): 456-464.
|
34. |
Zhou X, Lie L, Liang Y, et al. GSK-3α/β activity negatively regulates MMP-1/9 expression to suppress Mycobacterium tuberculosis infection. Front Immunol, 2022, 12: 752466.
|
35. |
邓敏华, 张睢扬, 王英. 结核后肺疾病的研究进展. 中华结核和呼吸杂志, 2022, 45(10): 1041-1045.
|
36. |
Poh XY, Loh FK, Friedland JS, et al. Neutrophil-mediated immunopathology and matrix metalloproteinases in central nervous system - tuberculosis. Front Immunol, 2022, 12: 788976.
|
37. |
Belton M, Brilha S, Manavaki R, et al. Hypoxia and tissue destruction in pulmonary TB. Thorax, 2016, 71(12): 1145-1153.
|
38. |
Whittington AM, Turner FS, Baark F, et al. An acidic microenvironment in tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses. PLoS Pathog, 2023, 19(7): e1011495.
|
39. |
Xu Y, Wang L, Zimmerman MD, et al. Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathog, 2018, 14(4): e1006974.
|
40. |
Ordonez AA, Pokkali S, Sanchez-Bautista J, et al. Matrix metalloproteinase inhibition in a murine model of cavitary tuberculosis paradoxically worsens pathology. J Infect Dis, 2019, 219(4): 633-636.
|