1. |
Jenkins DR. Nosocomial infections and infection control. Medicine, 2017, 45(10): 629-633.
|
2. |
Raoofi S, Pashazadeh Kan F, Rafiei S, et al. Global prevalence of nosocomial infection: a systematic review and meta-analysis. PLoS One, 2023, 18(1): e0274248.
|
3. |
Alemu AY, Endalamaw A, Bayih WA. The burden of healthcare-associated infection in Ethiopia: a systematic review and meta-analysis. Trop Med Health, 2020, 48: 77.
|
4. |
Saleem Z, Godman B, Hassali MA, et al. Point prevalence surveys of health-care-associated infections: a systematic review. Pathog Glob Health, 2019, 113(4): 191-205.
|
5. |
丁梦媛, 李文进, 耿苗苗, 等. 耐药菌医院感染风险评估与管理研究进展. 中国卫生资源, 2020, 23(4): 378-383.
|
6. |
Theodosiou AA, Read RC. Artificial intelligence, machine learning and deep learning: potential resources for the infection clinician. J Infect, 2023, 87(4): 287-294.
|
7. |
Donthu N, Kumar S, Mukherjee D, et al. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res, 2021, 133: 285-296.
|
8. |
He Z, Dai L, Zuo Y, et al. Hotspots and frontiers in pulmonary arterial hypertension research: a bibliometric and visualization analysis from 2011 to 2020. Bioengineered, 2022, 13(6): 14667-14680.
|
9. |
Lv Z, Hou J, Wang Y, et al. Knowledge-map analysis of bladder cancer immunotherapy. Hum Vaccin Immunother, 2023, 19(3): 2267301.
|
10. |
陈悦, 陈超美, 刘则渊, 等. CiteSpace 知识图谱的方法论功能. 科学学研究, 2015, 33(2): 242-253.
|
11. |
陈元, 董四平, 刘庭芳. 基于 CiteSpace 的医院运营管理英文文献计量分析. 华西医学, 2023, 38(12): 1850-1856.
|
12. |
Wu M, Long R, Bai Y, et al. Knowledge mapping analysis of international research on environmental communication using bibliometrics. J Environ Manage, 2021, 298: 113475.
|
13. |
Weissglass DE. Contextual bias, the democratization of healthcare, and medical artificial intelligence in low- and middle-income countries. Bioethics, 2022, 36(2): 201-209.
|
14. |
Guo Y, Hao Z, Zhao S, et al. Artificial intelligence in health care: bibliometric analysis. J Med Internet Res, 2020, 22(7): e18228.
|
15. |
Wondimagegn D, Ragab L, Yifter H, et al. Breaking borders: how barriers to global mobility hinder international partnerships in academic medicine. Acad Med, 2022, 97(1): 37-40.
|
16. |
Kotiranta A, Tahvanainen A, Kovalainen A, et al. Forms and varieties of research and industry collaboration across disciplines. Heliyon, 2020, 6(3): e03404.
|
17. |
Hautemanière A, Florentin A, Hartemann P, et al. Identifying possible deaths associated with nosocomial infection in a hospital by data mining. Am J Infect Control, 2011, 39(2): 118-122.
|
18. |
Sohn S, Larson DW, Habermann EB, et al. Detection of clinically important colorectal surgical site infection using Bayesian network. J Surg Res, 2017, 209: 168-173.
|
19. |
Liao YH, Wang ZC, Zhang FG, et al. Machine Learning methods applied to predict ventilator-associated pneumonia with Pseudomonas aeruginosa infection via sensor array of electronic nose in intensive care unit. Sensors (Basel), 2019, 19(8): 1866.
|
20. |
Karhade AV, Bongers MER, Groot OQ, et al. Can natural language processing provide accurate, automated reporting of wound infection requiring reoperation after lumbar discectomy?. Spine J, 2020, 20(10): 1602-1609.
|
21. |
Shrimali S, Teuscher C. A novel deep learning-, camera-, and sensor-based system for enforcing hand hygiene compliance in healthcare facilities. IEEE Sens J, 2023, 23(12): 13659-13670.
|
22. |
Carneiro J, Magalhães RP, de la Oliva Roque VM, et al. TargIDe: a machine-learning workflow for target identification of molecules with antibiofilm activity against Pseudomonas aeruginosa. J Comput Aid Mol Des, 2023, 37(5/6): 265-278.
|
23. |
Dang T, Han J, Xia T, et al. Exploring longitudinal cough, breath, and voice data for COVID-19 progression prediction via sequential deep learning: model development and validation. J Med Internet Res, 2022, 24(6): e37004.
|
24. |
Watine J, Charet JC, Bruel A, et al. Usefulness of a computerized expert system associated with systematic O-serotyping for the early detection of outbreaks of hospital acquired infections and for the presumptive antibiotic therapy of Pseudomonas aeruginosa infections. Pathol Biol (Paris), 1996, 44(2): 125-131.
|
25. |
Sureyya Rifaioglu A, Doğan T, Jesus Martin M, et al. DEEPred: automated protein function prediction with multi-task feed-forward deep neural networks. Sci Rep, 2019, 9(1): 7344.
|
26. |
Lewin-Epstein O, Baruch S, Hadany L, et al. Predicting antibiotic resistance in hospitalized patients by applying machine learning to electronic medical records. Clin Infect Dis, 2021, 72(11): e848-e855.
|
27. |
Mendonça EA, Haas J, Shagina L, et al. Extracting information on pneumonia in infants using natural language processing of radiology reports. J Biomed Inform, 2005, 38(4): 314-321.
|
28. |
Mikulskis P, Hook A, Dundas AA, et al. Prediction of broad-spectrum pathogen attachment to coating materials for biomedical devices. Acs Appl Mater Inter, 2018, 10(1): 139-149.
|
29. |
Li Y, Wang Y. Temporal convolution attention model for sepsis clinical assistant diagnosis prediction. Math Biosci Eng, 2023, 20(7): 13356-13378.
|
30. |
Roimi M, Neuberger A, Shrot A, et al. Early diagnosis of bloodstream infections in the intensive care unit using machine-learning algorithms. Intens Care Med, 2020, 46(3): 454-462.
|
31. |
Tabaie A, Orenstein EW, Kandaswamy S, et al. Integrating structured and unstructured data for timely prediction of bloodstream infection among children. Pediatr Res, 2023, 93(4): 969-975.
|
32. |
Tabaie A, Orenstein EW, Nemati S, et al. Deep learning model to predict serious infection among children with central venous lines. Front Pediatr, 2021, 9: 726870.
|
33. |
Sanger PC, van Ramshorst GH, Mercan E, et al. A prognostic model of surgical site infection using daily clinical wound assessment. J Am Coll Surgeons, 2016, 223(2): 259-270. e2.
|
34. |
Chen WJ, Lu Z, You L, et al. Artificial intelligence-based multimodal risk assessment model for surgical site infection (AMRAMS): development and validation study. JMIR Med Inf, 2020, 8(6): e18186.
|
35. |
Lo ZJ, Mak MHW, Liang S, et al. Development of an explainable artificial intelligence model for Asian vascular wound images. Int Wound J, 2023: 14.
|
36. |
Wiens J, Guttag J, Horvitz E. Patient risk stratification with time-varying parameters: a multitask learning approach. J Mach Learn Res, 2016, 17: 23.
|
37. |
Noaman AY, Nadeem F, Ragab AHM, et al. Improving prediction accuracy of “central line-associated blood stream infections” using data mining models. Biomed Res Int, 2017: 3292849.
|
38. |
Xu J, Chen X, Zheng X. Acinetobacter baumannii complex-caused bloodstream infection in ICU during a 12-year period: predicting fulminant sepsis by interpretable machine learning. Front Microbiol, 2022, 13: 1037735.
|