1. |
Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear?. AJR Am J Roentgenol, 2004, 183(1): 17-23.
|
2. |
Lerer DB, Umans HR, Hu MX, et al. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol, 2004, 33(10): 569-574.
|
3. |
Brophy RH, Sandell LJ, Rai MF, et al. Traumatic and degenerative meniscus tears have different gene expression signatures. Am J Sports Med, 2017, 45(1): 114-120.
|
4. |
Kopf S, Beaufils P, Hirschmann MT, et al. Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc, 2020, 28(4): 1177-1194.
|
5. |
Beaufils P, Becker R, Kopf S, et al. Surgical management of degenerative meniscus lesions: the 2016 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc, 2017, 25(2): 335-346.
|
6. |
Makiev KG, Vasios IS, Georgoulas P, et al. Clinical significance and management of meniscal extrusion in different knee pathologies: a comprehensive review of the literature and treatment algorithm. Knee Surg Relat Res, 2022, 34(1): 35.
|
7. |
Swamy N, Wadhwa V, Bajaj G, et al. Medial meniscal extrusion: detection, evaluation and clinical implications. Eur J Radiol, 2018, 102: 115-124.
|
8. |
Ogura T, Suzuki M, Sakuma Y, et al. Differences in levels of inflammatory mediators in meniscal and synovial tissue of patients with meniscal lesions. J Exp Orthop, 2016, 3(1): 7.
|
9. |
Adams JG, McAlindon T, Dimasi M, et al. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin Radiol, 1999, 54(8): 502-506.
|
10. |
Gale DR, Chaisson CE, Totterman SM, et al. Meniscal subluxation: Association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage, 1999, 7(6): 526-532.
|
11. |
Roemer FW, Kwoh CK, Hannon MJ, et al. Risk factors for magnetic resonance imaging–detected patellofemoral and tibiofemoral cartilage loss during a six-month period: the joints on glucosamine study. Arthritis Rheum, 2012, 64(6): 1888-1898.
|
12. |
Wang Y, Wluka AE, Pelletier JP, et al. Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology (Oxford), 2010, 49(5): 997-1004.
|
13. |
Okada K, Yamaguchi S, Sato Y, et al. Comparison of meniscal extrusion and osteophyte formation at the intercondylar notch as a predictive biomarker for incidence of knee osteoarthritis-data from the osteoarthritis initiative. J Orthop Sci, 2019, 24(1): 121-127.
|
14. |
Kim DH, Lee GC, Kim HH, et al. Correlation between meniscal extrusion and symptom duration, alignment, and arthritic changes in medial meniscus posterior root tear: research article. Knee Surg Relat Res, 2020, 32(1): 2.
|
15. |
Foreman SC, Liu Y, Nevitt MC, et al. Meniscal root tears and extrusion are significantly associated with the development of accelerated knee osteoarthritis: data from the osteoarthritis initiative. Cartilage, 2021, 13(Suppl 1): 239s-248s.
|
16. |
Chen CM. Citespace Ⅱ: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Tech, 2006, 57(3): 359-377.
|
17. |
van Eck NJ, Waltman L. Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2): 523-538.
|
18. |
Chen CM, Ibekwe-SanJuan F, Jianhua Hou JH. The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J Am Soc Inform Sci Tech, 2010, 61(7): 1386-1409.
|
19. |
Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis, 2005, 64(4): 556-563.
|
20. |
Hunter DJ, Zhang YQ, Niu JB, et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum, 2006, 54(3): 795-801.
|
21. |
Kornaat PR, Bloem JL, Ceulemans RY, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology, 2006, 239(3): 811-817.
|
22. |
Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the multicenter osteoarthritis study. Arthritis Rheum, 2009, 60(3): 831-839.
|
23. |
Torres L, Dunlop DD, Peterfy C, et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage, 2006, 14(10): 1033-1040.
|
24. |
Verdonk PC, Verstraete KL, Almqvist KF, et al. Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc, 2006, 14(8): 694-706.
|
25. |
Bhatia S, LaPrade CM, Ellman MB, et al. Meniscal root tears: Significance, diagnosis, and treatment. Am J Sports Med, 2014, 42(12): 3016-3030.
|
26. |
Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med, 2009, 37(1): 124-129.
|
27. |
Allaire R, Muriuki M, Gilbertson L, et al. Biomechanical consequences of a tear of the posterior root of the medial meniscus: similar to total meniscectomy. J Bone Joint Surg Am, 2008, 90(9): 1922-1931.
|
28. |
LaPrade CM, James EW, Cram TR, et al. Meniscal root tears: a classification system based on tear morphology. Am J Sports Med, 2014, 43(2): 363-369.
|
29. |
Sharma L, Eckstein F, Song J, et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum, 2008, 58(6): 1716-1726.
|
30. |
Sharma L, Chmiel JS, Almagor O, et al. Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol, 2014, 66(7): 1811-1819.
|
31. |
Crema MD, Guermazi A, Li L, et al. The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthritis Cartilage, 2010, 18(3): 336-343.
|
32. |
Badlani JT, Borrero C, Golla S, et al. The effects of meniscus injury on the development of knee osteoarthritis: data from the osteoarthritis initiative. Am J Sports Med, 2013, 41(6): 1238-1244.
|
33. |
Emmanuel K, Quinn E, Niu J, et al. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2016, 24 (2): 262-269.
|
34. |
Choi CJ, Choi YJ, Lee JJ, et al. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy, 2010, 26(12): 1602-1606.
|
35. |
LaPrade RF, LaPrade CM, James EW. Recent advances in posterior meniscal root repair techniques. J Am Acad Orthop Surg, 2015, 23(2): 71-76.
|
36. |
Feucht MJ, Grande E, Brunhuber J, et al. Biomechanical comparison between suture anchor and transtibial pull-out repair for posterior medial meniscus root tears. Am J Sports Med, 2013, 42(1): 187-193.
|
37. |
Nakama GY, Kaleka CC, Franciozi CE, et al. Biomechanical comparison of vertical mattress and cross-stitch suture techniques and single- and double-row configurations for the treatment of bucket-handle medial meniscal tears. Am J Sports Med, 2019, 47(5): 1194-1202.
|
38. |
Saltzman BM, Habet NA, Rao AJ, et al. Biomechanical evaluation of an all-inside posterior medial meniscal root repair technique via suture fixation to the posterior cruciate ligament. Arthroscopy, 2020, 36 (9): 2488-2497. e6.
|
39. |
Krych AJ, Bernard CD, Leland DP, et al. Isolated meniscus extrusion associated with meniscotibial ligament abnormality. Knee Surg Sports Traumatol Arthrosc, 2020, 28(11): 3599-3605.
|
40. |
Paletta GA Jr, Crane DM, Konicek J, et al. Surgical treatment of meniscal extrusion: a biomechanical study on the role of the medial meniscotibial ligaments with early clinical validation. Orthop J Sports Med, 2020, 8 (7): 2325967120936672.
|
41. |
Chung KS, Ha JK, Ra HJ, et al. Pullout fixation of posterior medial meniscus root tears: correlation between meniscus extrusion and midterm clinical results. Am J Sports Med, 2017, 45(1): 42-49.
|
42. |
Chung KS, Ha JK, Ra HJ, et al. Prognostic factors in the midterm results of pullout fixation for posterior root tears of the medial meniscus. Arthroscopy, 2016, 32(7): 1319-1327.
|
43. |
Chung KS, Ha JK, Ra HJ, et al. Pullout fixation for medial meniscus posterior root tears: clinical results were not age-dependent, but osteoarthritis progressed. Knee Surg Sports Traumatol Arthrosc, 2019, 27(1): 189-196.
|
44. |
Abat F, Gelber PE, Erquicia JI, et al. Suture-only fixation technique leads to a higher degree of extrusion than bony fixation in meniscal allograft transplantation. Am J Sports Med, 2012, 40(7): 1591-1596.
|
45. |
Masferrer-Pino A, Monllau JC, Abat F, et al. Capsular fixation limits graft extrusion in lateral meniscal allograft transplantation. Int Orthop, 2019, 43(11): 2549-2556.
|
46. |
Lee DH, Kim JM, Lee BS, et al. Greater axial trough obliquity increases the risk of graft extrusion in lateral meniscus allograft transplantation. Am J Sports Med, 2012, 40(7): 1597-1605.
|
47. |
Choi NH, Choi JK, Yang BS, et al. Lateral meniscal allograft transplant via a medial approach leads to less extrusion. Am J Sports Med, 2017, 45(12): 2791-2796.
|
48. |
Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431.
|
49. |
Gao S, Chen M, Wang P, et al. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater, 2018, 73: 127-140.
|