1. |
Carabello BA. Introduction to aortic stenosis. Circ Res, 2013, 113(2): 179-185.
|
2. |
Peeters FECM, Meex SJR, Dweck MR, et al. Calcific aortic valve stenosis: hard disease in the heart: a biomolecular approach towards diagnosis and treatment. Eur Heart J, 2018, 39(28): 2618-2624.
|
3. |
Tanase DM, Valasciuc E, Gosav EM, et al. Contribution of oxidative stress (OS) in calcific aortic valve disease (CAVD): from pathophysiology to therapeutic targets. Cells, 2022, 11(17): 2663.
|
4. |
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab, 2005, 1(6): 361-370.
|
5. |
Chen HJ, Pan XX, Ding LL, et al. Cardiac fibroblast-specific knockout of PGC-1α accelerates AngⅡ-induced cardiac remodeling. Front Cardiovasc Med, 2021, 8: 664626.
|
6. |
Avvedimento M, Tang GHL. Transcatheter aortic valve replacement (TAVR): recent updates. Prog Cardiovasc Dis, 2021, 69: 73-83.
|
7. |
Tavares CDJ, Aigner S, Sharabi K, et al. Transcriptome-wide analysis of PGC-1α-binding RNAs identifies genes linked to glucagon metabolic action. Proc Natl Acad Sci U S A, 2020, 117(36): 22204-22213.
|
8. |
Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol, 2018, 10(4): a022293.
|
9. |
Fu M, Peng D, Lan T, et al. Multifunctional regulatory protein connective tissue growth factor (CTGF): a potential therapeutic target for diverse diseases. Acta Pharm Sin B, 2022, 12(4): 1740-1760.
|
10. |
Fang M, Alfieri CM, Hulin A, et al. Loss of β-catenin promotes chondrogenic differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol, 2014, 34(12): 2601-2608.
|
11. |
Worke LJ, Barthold JE, Seelbinder B, et al. Densification of type Ⅰ collagen matrices as a model for cardiac fibrosis. Adv Healthc Mater, 2017, 6(22): 170014.
|
12. |
Oveissi F, Naficy S, Lee A, et al. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio, 2019, 5: 100038.
|
13. |
Garsen M, Buijsers B, Sol M, et al. Peroxisome proliferator-activated receptor ɣ agonist mediated inhibition of heparanase expression reduces proteinuria. EBioMedicine, 2023, 90: 104506.
|
14. |
Rogers JD, Aguado BA, Watts KM, et al. Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera. Proc Natl Acad Sci U S A, 2022, 119(8): e2117323119.
|
15. |
Yutzey KE, Demer LL, Body SC, et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol, 2014, 34(11): 2387-2393.
|
16. |
Sritharen Y, Enriquez-Sarano M, Schaff HV, et al. Pathophysiology of aortic valve stenosis: is it both fibrocalcific and sex specific?. Physiology (Bethesda), 2017, 32(3): 182-196.
|
17. |
Siudut J, Natorska J, Wypasek E, et al. Impaired fibrinolysis in patients with isolated aortic stenosis is associated with enhanced oxidative stress. J Clin Med, 2020(6): 2002.
|
18. |
Das D, Holmes A, Murphy GA, et al. TGF-beta1-induced MAPK activation promotes collagen synthesis, nodule formation, redox stress and cellular senescence in porcine aortic valve interstitial cells. J Heart Valve Dis, 2013, 22(5): 621-630.
|
19. |
Zhang Y, Shen L, Zhu H, et al. PGC-1α regulates autophagy to promote fibroblast activation and tissue fibrosis. Ann Rheum Dis, 2020, 79(9): 1227-1233.
|
20. |
Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta, 2013, 1833(4): 840-847.
|
21. |
Waldman M, Cohen K, Yadin D, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving “SIRT1 and PGC-1α”. Cardiovasc Diabetol, 2018, 17(1): 111.
|
22. |
Arany Z, Novikov M, Chin S, et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A, 2006, 103(26): 10086-10091.
|
23. |
Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005, 434(7029): 113-118.
|
24. |
Xiong S, Salazar G, Patrushev N, et al. Peroxisome proliferator-activated receptor γ coactivator-1α is a central negative regulator of vascular senescence. Arterioscler Thromb Vasc Biol, 2013, 33(5): 988-998.
|
25. |
Fierro-Fernández M, Miguel V, Márquez-Expósito L, et al. MiR-9-5p protects from kidney fibrosis by metabolic reprogramming. FASEB J, 2020, 34(1): 410-431.
|
26. |
Puigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science, 1999, 286(5443): 1368-1371.
|
27. |
Akizuki K, Kinumi T, Ono A, et al. Autoactivation of C-terminally truncated Ca2+/calmodulin-dependent protein kinase (CaMK) Iδ via CaMK kinase-independent autophosphorylation. Arch Biochem Biophys, 2019, 668: 29-38.
|
28. |
Luo X, Yu W, Liu Z, et al. Ageing increases cardiac electrical remodelling in rats and mice via NOX4/ROS/CaMKII-mediated calcium signalling. Oxid Med Cell Longev, 2022, 2022: 8538296.
|
29. |
Hagler MA, Hadley TM, Zhang H, et al. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res, 2013, 99(1): 175-184.
|
30. |
Li X, Wang B, Tang L, et al. GSTA1 expression is correlated with aldosterone level in KCNJ5-mutated adrenal aldosterone-producing adenoma. J Clin Endocrinol Metab, 2018, 103(3): 813-823.
|
31. |
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev, 2004, 18(16): 1926-1945.
|
32. |
Lu Y, Zhang Y, Pan Z, et al. Potential “therapeutic” effects of tocotrienol-rich fraction (trf) and carotene “against” bleomycin-induced pulmonary fibrosis in rats via TGF-β/Smad, PI3K/Akt/mTOR and NF-κB signaling pathways. Nutrients, 2022, 14(5): 1094.
|