1. |
Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review. JAMA, 2021, 325(4): 382-390.
|
2. |
De Campos T, Deree J, Coimbra R. From acute pancreatitis to end-organ injury: mechanisms of acute lung injury. Surg Infect (Larchmt), 2007, 8(1): 107-120.
|
3. |
Owusu L, Xu C, Chen H, et al. Gamma-enolase predicts lung damage in severe acute pancreatitis-induced acute lung injury. J Mol Histol, 2018, 49(4): 347-356.
|
4. |
Hu Q, Zhang S, Yang Y, et al. Extracellular vesicle ITGAM and ITGB2 mediate severe acute pancreatitis-related acute lung injury. ACS Nano, 2023, 17(8): 7562-7575.
|
5. |
Hu Q, Zhang S, Yang Y, et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res, 2022, 9(1): 61.
|
6. |
Li Q, Chen X, Li J. Marrow-derived mesenchymal stem cells regulate the inflammatory response and repair alveolar type Ⅱ epithelial cells in acute lung injury of rats. J Int Med Res, 2020, 48(4): 300060520909027.
|
7. |
Villar J, Fernández RL, Ambrós A, et al. A clinical classification of the acute respiratory distress syndrome for predicting outcome and guiding medical therapy. Crit Care Med, 2015, 43(2): 346-353.
|
8. |
Lee JH, Park J, Lee JW. Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. Transfusion, 2019, 59(S1): 876-883.
|
9. |
Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell, 2020, 11(10): 707-722.
|
10. |
Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano, 2021, 15(1): 1519-1538.
|
11. |
Hu Q, Su H, Li J, et al. Clinical applications of exosome membrane proteins. Precis Clin Med, 2020, 3(1): 54-66.
|
12. |
Zheng L, Gong H, Zhang J, et al. Strategies to improve the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicle (MSC-EV): a promising cell-free therapy for liver disease. Front Bioeng Biotechnol, 2023, 11: 1322514.
|
13. |
Hu Q, Yao J, Wu X, et al. Emodin attenuates severe acute pancreatitis-associated acute lung injury by suppressing pancreatic exosome-mediated alveolar macrophage activation. Acta Pharm Sin B, 2022, 12(10): 3986-4003.
|
14. |
Yang Y, Hu Q, Kang H, et al. Urolithin A protects severe acute pancreatitis‐associated acute cardiac injury by regulating mitochondrial fatty acid oxidative metabolism in cardiomyocytes. MedComm(2020), 2023, 4(6): e459.
|
15. |
Perides G, van Acker GJ, Laukkarinen JM, et al. Experimental acute biliary pancreatitis induced by retrograde infusion of bile acids into the mouse pancreatic duct. Nat Protoc, 2010, 5(2): 335-341.
|
16. |
康鸿鑫, 赵先林, 李娟, 等. 基于“温邪上受, 首先犯肺”探讨胰源性外泌体介导重症急性胰腺炎先发急性肺损伤的机制. 中国中西医结合消化杂志, 2020, 28(3): 180-183.
|
17. |
Tomita K, Saito Y, Suzuki T, et al. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(12): 2365-2374.
|
18. |
Wang P, Luo R, Zhang M, et al. A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection. Cell Death Dis, 2020, 11(12): 1042.
|
19. |
Wang F, Lu F, Huang H, et al. Ultrastructural changes in the pulmonary mechanical barriers in a rat model of severe acute pancreatitis-associated acute lung injury. Ultrastruct Pathol, 2016, 40(1): 33-42.
|
20. |
白吉佳, 石国翠, 马申懋, 等. TNF-α下调大鼠肺微血管内皮细胞紧密连接蛋白 ZO-1、Claudin-5 的表达. 重庆医科大学学报, 2024, 49(2): 125-131.
|
21. |
Ge P, Luo Y, Okoye C S, et al. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: a troublesome trio for acute pancreatitis. Biomed Pharmacother, 2020, 132: 110770.
|