1. |
Wang S, Lv J, Meng S, et al. Recent advances in nanotheranostics for treat-to-target of rheumatoid arthritis. Adv Healthc Mater, 2020, 9(6): e1901541.
|
2. |
Gravallese EM, Firestein GS. Rheumatoid arthritis-common origins, divergent mechanisms. N Engl J Med, 2023, 388(6): 529-542.
|
3. |
Zhu Y, Zhao Tj, Liu M, et al. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today, 2022, 42: 101358.
|
4. |
陈杨, 刘冀龙, 耿培亮. 肿瘤诊疗领域医学与工程学融合发展的现状与趋势. 中国医学装备, 2021, 18(3): 177-180.
|
5. |
张海宏, 黄山, 张志毅, 等. 面向成果转化推进医工结合的对策分析. 中国高等医学教育, 2023 (4): 41-42.
|
6. |
Singh H, Dan A, Kumawat MK, et al. Pathophysiology to advanced intra-articular drug delivery strategies: unravelling rheumatoid arthritis. Biomaterials, 2023, 303: 122390.
|
7. |
Zhang C, Ma P, Qin A, et al. Current immunotherapy strategies for rheumatoid arthritis: the immunoengineering and delivery systems. Research, 2023, 6: 0220.
|
8. |
尹耕, 文富强. 类风湿关节炎的炎症免疫机制及疾病活动性的评估. 四川大学学报(医学版), 2015, 46(2): 267-271, 158.
|
9. |
Ai R, Whitaker JW, Boyle DL, et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol, 2015, 67(7): 1978-1980.
|
10. |
Aggarwal R, Rider LG, Ruperto N, et al. 2016 American College of Rheumatology/European League Against Rheumatism criteria for minimal, moderate, and major clinical response in adult dermatomyositis and polymyositis: an International Myositis Assessment and Clinical Studies Group/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann Rheum Dis, 2017, 76(5): 792-801.
|
11. |
Radu AF, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev, 2023, 87: 101927.
|
12. |
Li YF, Liang QW, Zhou LY, et al. Metal nanoparticles: a platform integrating diagnosis and therapy for rheumatoid arthritis. J Nanopart Res, 2022, 24(4): 84.
|
13. |
Colebatch AN, Edwards CJ, Østergaard M, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis, 2013, 72(6): 804-814.
|
14. |
Liang WQ, Yu YJ, Liu ZY, et al. The therapeutic potential of targeted nanoparticulate systems to treat rheumatoid arthritis. J Nanomater, 2022, 2022: 8900658.
|
15. |
Huang J, Fu X, Chen X, et al. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol, 2021, 12: 686155.
|
16. |
Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells, 2021, 10(11): 2857.
|
17. |
Golfinopoulou R, Kintzios S. Biosensing for autoimmune chronic disease-a review. Chemosensors, 2023, 11(7): 366.
|
18. |
Imas JJ, Ruiz Zamarreño C, Zubiate P, et al. Optical biosensors for the detection of rheumatoid arthritis (RA) biomarkers: a comprehensive review. Sensors (Basel), 2020, 20(21): 6289.
|
19. |
Veigas B, Matias A, Calmeiro T, et al. Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis. Analyst, 2019, 144(11): 3613-3619.
|
20. |
Ma J, Chen J, Li Y, et al. Electrochemical immuno determination of connective tissue growth factor levels on nitrogen-doped graphene. Microchim Acta, 2022, 189(5): 187.
|
21. |
Herlitz-Cifuentes H, Vejar C, Flores A, et al. Plasma from patients with rheumatoid arthritis reduces nitric oxide synthesis and induces reactive oxygen species in a cell-based biosensor. Biosensors (Basel), 2019, 9(1): 32.
|
22. |
Arévalo B, Serafín V, Sánchez-Paniagua M, et al. Fast and sensitive diagnosis of autoimmune disorders through amperometric biosensing of serum anti-dsdna autoantibodies. Biosens Bioelectron, 2020, 160: 112233.
|
23. |
Guerrero S , Sánchez-Tirado E , Martínez-García G, et al. Electrochemical biosensor for the simultaneous determination of rheumatoid factor and anti-cyclic citrullinated peptide antibodies in human serum. Analyst, 2020, 145(13): 4680-4687.
|
24. |
Hwang EY, Lee JH, Lim DW. Directional self-assembly of anisotropic bimetal-poly(aniline) nanostructures for rheumatoid arthritis diagnosis in multiplexing. Anal Chim Acta, 2021, 1174: 338699.
|
25. |
Wang Z, Tong Z, Chen H, et al. Photoacoustic/ultrasonic dual-mode imaging for monitoring angiogenesis and synovial erosion in rheumatoid arthritis. Photoacoustics, 2023, 29: 100458.
|
26. |
Zhao CY, Zhang R, Zhu QL, et al. The potential of photoacoustic techniques in inflammatory arthritis: what can it do to assist conventional imaging methods?. Chin J Acad Radiol, 2021, 4(2): 79-87.
|
27. |
Xiao SY, Tang YF, Lin YM, et al. In vivo nano contrast-enhanced photoacoustic imaging for dynamically lightening the molecular changes of rheumatoid arthritis. Mater Des, 2021, 207: 109862.
|
28. |
He X, Chen H, Chang S, et al. Multifunctional nanoparticles co-loaded with perfluoropropane, indocyanine green, and methotrexate for enhanced multimodal imaging of collagen-induced arthritis. Mol Pharm, 2022, 19(7): 2418-2428.
|
29. |
Peng X, Xu Z, Dentinger A, et al. Longitudinal volumetric assessment of inflammatory arthritis via photoacoustic imaging and doppler ultrasound imaging. Photoacoustics, 2023, 31: 100514.
|
30. |
Yang M, Zhao C, Wang M, et al. Synovial oxygenation at photoacoustic imaging to assess rheumatoid arthritis disease activity. Radiology, 2023, 306(1): 220-228.
|
31. |
Chen J, Zeng S, Xue Q, et al. Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc Natl Acad Sci USA, 2022, 119(43): e2213373119.
|
32. |
Lan RD, Lv JX, Gao DY, et al. Folate receptor-targeted NIR-Ⅱ dual-model nanoprobes for multiscale visualization of macrophages in rheumatoid arthritis. Adv Funct Mater, 2023, 33(29): 202300342.
|
33. |
Bruno MC, Cristiano MC, Celia C, et al. Injectable drug delivery systems for osteoarthritis and rheumatoid arthritis. ACS Nano, 2022, 16(12): 19665-19690.
|
34. |
Dhule KD, Nandgude TD. Lipid nano-system based topical drug delivery for management of rheumatoid arthritis: an overview. Adv Pharm Bull, 2023, 13(4): 663-677.
|
35. |
He W, Kapate N, Shields CW 4th, et al. Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for in flammatory diseases. Adv Drug Deliv Rev, 2020(165/166): 15-40.
|
36. |
Guimarães D, Noro J, Loureiro A, et al. Increased encapsulation efficiency of methotrexate in liposomes for rheumatoid arthritis therapy. Biomedicines, 2020, 8(12): 630.
|
37. |
Lai X, Wang S, Hu M, et al. Dual targeting single arrow: neutrophil-targeted sialic acid-modified nanoplatform for treating comorbid tumors and rheumatoid arthritis. Int J Pharm, 2021, 607: 121022.
|
38. |
Nooreen R, Nene S, Jain H, et al. Polymer nanotherapeutics:a versatile platform for effective rheumatoid arthritis therapy. J Control Release, 2022, 348: 397-419.
|
39. |
Libánská A, Randárová E, Skoroplyas S, et al. Size-switchable polymer-based nanomedicines in the advanced therapy of rheumatoid arthritis. J Control Release, 2023, 353: 30-41.
|
40. |
Shang W, Sun Q, Zhang C, et al. Drug in therapeutic polymer: sinomenine-loaded oxidation-responsive polymeric nanoparticles for rheumatoid arthritis treatment. ACS Appl Mater Interfaces, 2023, 15(40): 47552-47565.
|
41. |
Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 2018, 8(5): 1399-1410.
|
42. |
Buzas EI, György B, Nagy G, et al. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol, 2014, 10(6): 356-364.
|
43. |
Tran TH, Mattheolabakis G, Aldawsari H, et al. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol, 2015, 160(1): 46-58.
|
44. |
Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta, 2019, 488: 165-171.
|
45. |
Takenaka M, Yabuta A, Takahashi Y, et al. Interleukin-4-carrying small extracellular vesicles with a high potential as anti-inflammatory therapeutics based on modulation of macrophage function. Biomaterials, 2021, 278: 121160.
|
46. |
Topping LM, Thomas BL, Rhys HI, et al. Targeting extracellular vesicles to the arthritic joint using a damaged cartilage-specific antibody. Front Immunol, 2020, 11: 10.
|
47. |
Song C, Xu S, Chang L, et al. Preparation of EGCG decorated, injectable extracellular vesicles for cartilage repair in rat arthritis. Regen Biomater, 2021, 8(6): rbab067.
|
48. |
Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev, 2019, 119(8): 4881-4985.
|
49. |
Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev, 2019, 119(6): 4357-4412.
|
50. |
Gao F, Yuan Q, Cai P, et al. Au clusters treat rheumatoid arthritis with uniquely reversing cartilage/bone destruction. Adv Sci (Weinh), 2019, 6(7): 1801671.
|
51. |
Kim J, Kim HY, Song SY, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano, 2019, 13(3): 3206-3217.
|
52. |
Yang B, Yao H, Yang J, et al. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat Commun, 2022, 13(1): 1988.
|
53. |
Yi J, Liu Y, Xie H, et al. Hydrogels for the treatment of rheumatoid arthritis. Front Bioeng Biotechnol, 2022, 10: 1014543.
|
54. |
Xue X, Hu Y, Deng YH, et al. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv Funct Mater, 2021, 31(19): 2009432.
|
55. |
Dehshahri A, Kumar A, Madamsetty VS, et al. New horizons in hydrogels for methotrexate delivery. Gels, 2020, 7(1): 2.
|
56. |
Zhu H, Wu X, Liu R, et al. ECM-inspired hydrogels with ADSCs encapsulation for rheumatoid arthritis treatment. Adv Sci (Weinh), 2023, 10(9): e2206253.
|
57. |
Rui K, Tang X, Shen Z, et al. Exosome inspired photo-triggered gelation hydrogel composite on modulating immune pathogenesis for treating rheumatoid arthritis. J Nanobiotechnology, 2023, 21(1): 111.
|
58. |
Yeo J, Lee YM, Lee J, et al. Nitric oxide-scavenging nanogel for treating rheumatoid arthritis. Nano Lett, 2019, 19(10): 6716-6724.
|
59. |
Khan D, Qindeel M, Ahmed N, et al. Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of ibuprofen against rheumatoid arthritis. Int J Pharm, 2021, 610: 121242.
|