- 1. Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
- 2. Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
In recent years, regenerative medical technology and modern rehabilitation technology complement each other and develop rapidly. Regenerative rehabilitation with tissue regeneration and functional recovery as the core concept arises at the historic moment. Regenerative rehabilitation can quickly repair damaged or diseased tissues and organs, and restore or improve the function of patients to the greatest extent. This paper introduces the origin and development of regenerative rehabilitation, discusses the research progress and significance of related strategies from three aspects of neurological, motor and circulatory diseases, and stress the importance of regenerative rehabilitation in helping patients to obtain the best curative effect.
Citation: QI Tong, HE Chengqi. Research progress of regenerative rehabilitation. West China Medical Journal, 2024, 39(6): 845-850. doi: 10.7507/1002-0179.202404123 Copy
1. | Greising SM, Call JA. Regenerative rehabilitation: from basic science to the clinic. Cham: Springer Nature, 2022. |
2. | Rose LF, Wolf EJ, Brindle T, et al. The convergence of regenerative medicine and rehabilitation: federal perspectives. NPJ Regen Med, 2018, 3(1): 19. |
3. | Head PL. Rehabilitation considerations in regenerative medicine. Phys Med Rehabil Clin N Am, 2016, 27(4): 1043-1054. |
4. | 付小兵, 程飚. 再生康复医学:新需求 新融合 新方向. 中华烧伤与创面修复杂志, 2018, 34(2): 65-68. |
5. | Daar AS, Greenwood HL. A proposed definition of regenerative medicine. J Tissue Eng Regen Med, 2007, 1(3): 179-184. |
6. | Atanelov L, Stiens SA, Young MA. History of physical medicine and rehabilitation and its ethical dimensions. AMA J Ethics, 2015, 17(6): 568-574. |
7. | Rodriguez AM, Elabd C, Amri EZ, et al. The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005, 87(1): 125-128. |
8. | Perez-Terzic C, Childers MK. Regenerative rehabilitation: a new future?. Am J Phys Med Rehabil, 2014, 93(11 Suppl 3): S73-S78. |
9. | Willett NJ, Boninger ML, Miller LJ, et al. Taking the next steps in regenerative rehabilitation: establishment of a new interdisciplinary field. Arch Phys Med Rehabil, 2020, 101(5): 917-923. |
10. | 付小兵. 组织再生:梦想、希望和挑战. 中国工程科学, 2009, 11(10): 122-128. |
11. | 付小兵. 对组织再生和再生医学发展的再思考. 中华烧伤杂志, 2011, 27(1): 1-2. |
12. | Budde H, Wegner M, Soya H, et al. Neuroscience of exercise: neuroplasticity and its behavioral consequences. Neural Plast, 2016, 2016: 3643879. |
13. | Grumbles RM, Liu Y, Thomas CM, et al. Acute stimulation of transplanted neurons improves motoneuron survival, axon growth, and muscle reinnervation. J Neurotrauma, 2013, 30(12): 1062-1069. |
14. | Kurimoto S, Kato S, Nakano T, et al. Transplantation of embryonic motor neurons into peripheral nerve combined with functional electrical stimulation restores functional muscle activity in the rat sciatic nerve transection model. J Tissue Eng Regen Med, 2016, 10(10): E477-E484. |
15. | Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol, 2022, 21(7): 659-670. |
16. | Canning CG, Allen NE, Nackaerts E, et al. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol, 2020, 16(8): 409-425. |
17. | Wang YY, Cheng J, Liu YD, et al. Exosome-based regenerative rehabilitation: a novel ice breaker for neurological disorders. Biomed Pharmacother, 2023, 169: 115920. |
18. | Červenka J, Tylečková J, Kupcová Skalníková H, et al. Proteomic characterization of human neural stem cells and their secretome during in vitro differentiation. Front Cell Neurosci, 2021, 14: 612560. |
19. | Centeno CJ, Pastoriza SM. Past, current and future interventional orthobiologics techniques and how they relate to regenerative rehabilitation: a clinical commentary. Int J Sports Phys Ther, 2020, 15(2): 301. |
20. | Xing Y, Bai Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms. Mol Neurobiol, 2020, 57(10): 4218-4231. |
21. | Szelenberger R, Kostka J, Saluk-Bijak J, et al. Pharmacological interventions and rehabilitation approach for enhancing brain self-repair and stroke recovery. Curr Neuropharmacol, 2020, 18(1): 51-64. |
22. | Zhang YX, Yuan MZ, Cheng L, et al. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci, 2015, 16: 1-8. |
23. | Ito A, Kubo N, Liang N, et al. Regenerative rehabilitation for stroke recovery by inducing synergistic effects of cell therapy and neurorehabilitation on motor function: a narrative review of pre-clinical studies. Int J Mol Sci, 2020, 21(9): 3135. |
24. | Lin L, Skakavac N, Lin X, et al. Acupuncture-induced analgesia: the role of microglial inhibition. Cell Transplant, 2016, 25(4): 621-628. |
25. | Iwasa SN, Babona-Pilipos R, Morshead CM. Environmental factors that influence stem cell migration: an “electric field”. Stem Cells Int, 2017, 2017: 4276927. |
26. | Emmons R, Niemiro GM, De Lisio M. Exercise as an adjuvant therapy for hematopoietic stem cell mobilization. Stem Cells Int, 2016, 2016: 7131359. |
27. | Wang Y, Gao Z, Zhang Y, et al. Attenuated reactive gliosis and enhanced functional recovery following spinal cord injury in null mutant mice of platelet-activating factor receptor. Mol Neurobiol, 2016, 53(5): 3448-3461. |
28. | Wang HF, Liu XK, Li R, et al. Effect of glial cells on remyelination after spinal cord injury. Neural Regen Res, 2017, 12(10): 1724-1732. |
29. | Moritz CT, Ambrosio F. Regenerative rehabilitation: combining stem cell therapies and activity-dependent stimulation. Pediatr Phys Ther, 2017, 29(Suppl 3): S10-S15. |
30. | Balbinot G. Neuromodulation to guide circuit reorganization with regenerative therapies in upper extremity rehabilitation following cervical spinal cord injury. Front Rehabil Sci, 2024, 4: 1320211. |
31. | Balbinot G, Li G, Gauthier C, et al. Functional electrical stimulation therapy for upper extremity rehabilitation following spinal cord injury: a pilot study. Spinal Cord Ser Cases, 2023, 9(1): 11. |
32. | Cataln LE, Villegas AM, Liber LT, et al. Synthesis of nine safrole derivatives and their antiproliferative activity towards human cancer cells. J Chil Chem Soc, 2010, 55(2): 219-222. |
33. | Tashiro S, Shinozaki M, Mukaino M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair, 2015, 29(7): 677-689. |
34. | Saunders D, Rose L. Regenerative rehabilitation of catastrophic extremity injury in military conflicts and a review of recent developmental efforts. Connect Tissue Res, 2021, 62(1): 83-98. |
35. | Ross HH, Ambrosio F, Trumbower RD, et al. Neural stem cell therapy and rehabilitation in the central nervous system: emerging partnerships. Phys Ther, 2016, 96(5): 734-742. |
36. | Gurjar AA, Manto KM, Estrada JA, et al. 4-aminopyridine: a single-dose diagnostic agent to differentiate axonal continuity in nerve injuries. Mil Med, 2021, 186(Suppl 1): 479-485. |
37. | Qi T, Zhang X, Gu X, et al. Experimental study on repairing peripheral nerve defects with novel bionic tissue engineering. Adv Healthc Mater, 2023, 12(17): e2203199. |
38. | Song J, Sun B, Liu S, et al. Polymerizing pyrrole coated poly (l-lactic acid-co-ε-caprolactone)(PLCL) conductive nanofibrous conduit combined with electric stimulation for long-range peripheral nerve regeneration. Front Mol Neurosci, 2016, 9: 117. |
39. | Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: the role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res, 2019, 37(6): 1263-1269. |
40. | Thompson WR, Scott A, Loghmani MT, et al. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther, 2016, 96(4): 560-569. |
41. | Cheuy V, Picciolini S, Bedoni M. Progressing the field of regenerative rehabilitation through novel interdisciplinary interaction. NPJ Regen Med, 2020, 5: 16. |
42. | Emery AE. The muscular dystrophies. Lancet, 2002, 359(9307): 687-695. |
43. | Bouchentouf M, Benabdallah BF, Mills P, et al. Exercise improves the success of myoblast transplantation in mdx mice. Neuromuscul Disord, 2006, 16(8): 518-529. |
44. | Call JA, McKeehen JN, Novotny SA, et al. Progressive resistance voluntary wheel running in the mdx mouse. Muscle Nerve, 2010, 42(6): 871-880. |
45. | Lindsay A, Larson AA, Verma M, et al. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. J Appl Physiol (1985), 2019, 126(2): 363-375. |
46. | Teixeira E, Duarte JA. Skeletal muscle loading changes its regenerative capacity. Sports Med, 2016, 46(6): 783-792. |
47. | Partridge TA, Morgan JE, Coulton GR, et al. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature, 1989, 337(6203): 176-179. |
48. | Gentile NE, Stearns KM, Brown EH, et al. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil, 2014, 93(11 Suppl 3): S79-S87. |
49. | Garg K, Ward CL, Hurtgen BJ, et al. Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J Orthop Res, 2015, 33(1): 40-46. |
50. | Dziki J, Badylak S, Yabroudi M, et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med, 2016, 1: 16008. |
51. | Greising SM, Corona BT, McGann C, et al. Therapeutic approaches for volumetric muscle loss injury: a systematic review and meta-analysis. Tissue Eng Part B Rev, 2019, 25(6): 510-525. |
52. | Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(2): 1081-1101. |
53. | Heckman JD, Ryaby JP, McCabe J, et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am, 1994, 76(1): 26-34. |
54. | Kristiansen TK, Ryaby JP, Mccabe J, et al. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. JBJS, 1997, 79(7): 961-973. |
55. | Kubiak EN, Beebe MJ, North K, et al. Early weight bearing after lower extremity fractures in adults. J Am Acad Orthop Surg, 2013, 21(12): 727-738. |
56. | Leppik L, Zhihua H, Mobini S, et al. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep, 2018, 8(1): 6307. |
57. | Hardy JG, Villancio-Wolter MK, Sukhavasi RC, et al. Electrical stimulation of human mesenchymal stem cells on conductive nanofibers enhances their differentiation toward osteogenic outcomes. Macromol Rapid Commun, 2015, 36(21): 1884-1890. |
58. | Cheung WH, Chin WC, Wei FY, et al. Applications of exogenous mesenchymal stem cells and low intensity pulsed ultrasound enhance fracture healing in rat model. Ultrasound Med Biol, 2013, 39(1): 117-125. |
59. | 任飞. 浅谈运动创伤研究的新进展. 科技信息, 2012(34): 443-444. |
60. | Boswell SG, Cole BJ, Sundman EA, et al. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy, 2012, 28(3): 429-439. |
61. | Kia C, Baldino J, Bell R, et al. Platelet-rich plasma: review of current literature on its use for tendon and ligament pathology. Curr Rev Musculoskelet Med, 2018, 11(4): 566-572. |
62. | 陈庆庆, 何红晨. 富血小板血浆促进创面愈合的研究进展. 中国烧伤创疡杂志, 2018, 30(1): 17-20. |
63. | 毛晓晖, 李昕阳. 富血小板血浆局部注射治疗肱骨外上髁炎的疗效观察. 临床医学进展, 2023, 13(6): 9522-9528. |
64. | Zhu S, Wang Z, Liang Q, et al. Chinese guidelines for the rehabilitation treatment of knee osteoarthritis: an CSPMR evidence-based practice guideline. J Evid Based Med, 2023, 16(3): 376-393. |
65. | 王谦, 何红晨. 基于富血小板血浆的再生康复技术在运动损伤中的应用. 中华创伤杂志, 2023, 39(9): 780-785. |
66. | Hamilton B, Tol JL, Knez W, et al. Exercise and the platelet activator calcium chloride both influence the growth factor content of platelet-rich plasma (PRP): overlooked biochemical factors that could influence PRP treatment. Br J Sports Med, 2015, 49(14): 957-960. |
67. | Tavakoli J, Torkaman G, Ravanbod R, et al. Regenerative effect of low-intensity pulsed ultrasound and platelet-rich plasma on the joint friction and biomechanical properties of cartilage: a non-traumatic osteoarthritis model in the guinea pig. Ultrasound Med Biol, 2022, 48(5): 862-871. |
68. | Paolucci T, Agostini F, Bernetti A, et al. Integration of focal vibration and intra-articular oxygen-ozone therapy in rehabilitation of painful knee osteoarthritis. J Int Med Res, 2021, 49(2): 300060520986705. |
69. | Fattorini L, Rodio A, Pettorossi VE, et al. Is the focal muscle vibration an effective motor conditioning intervention? A systematic review. J Funct Morphol Kinesiol, 2021, 6(2): 39. |
70. | Simão AP, Avelar NC, Tossige-Gomes R, et al. Functional performance and inflammatory cytokines after squat exercises and whole-body vibration in elderly individuals with knee osteoarthritis. Arch Phys Med Rehabil, 2012, 93(10): 1692-1700. |
71. | Wang P, Yang L, Liu C, et al. Effects of whole body vibration exercise associated with quadriceps resistance exercise on functioning and quality of life in patients with knee osteoarthritis: a randomized controlled trial. Clin Rehabil, 2016, 30(11): 1074-1087. |
72. | Juncosa-Melvin N, Shearn JT, Boivin GP, et al. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng, 2006, 12(8): 2291-2300. |
73. | Virchenko O, Aspenberg P. How can one platelet injection after tendon injury lead to a stronger tendon after 4 weeks? Interplay between early regeneration and mechanical stimulation. Acta Orthop, 2006, 77(5): 806-812. |
74. | Bayer ML, Schjerling P, Herchenhan A, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One, 2014, 9(1): e86078. |
75. | 王继兵, 尹正录, 孟兆祥, 等. 超声引导下自体富血小板血浆注射联合体外冲击波治疗肩袖损伤的临床研究. 实用老年医学, 2023, 37(7): 690-694. |
76. | Pang L, Xu Y, Li T, et al. Platelet-rich plasma injection can be a viable alternative to corticosteroid injection for conservative treatment of rotator cuff disease: a meta-analysis of randomized controlled trials. Arthroscopy, 2023, 39(2): 402-421.e1. |
77. | Suresh R, Chiriac A, Goel K, et al. CXCR4+ and FLK-1+ identify circulating cells associated with improved cardiac function in patients following myocardial infarction. J Cardiovasc Transl Res, 2013, 6(5): 787-797. |
78. | Wojakowski W, Landmesser U, Bachowski R, et al. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 2012, 26(1): 23-33. |
79. | Witkowski S, Lockard MM, Jenkins NT, et al. Relationship between circulating progenitor cells, vascular function and oxidative stress with long-term training and short-term detraining in older men. Clin Sci (Lond), 2010, 118(4): 303-311. |
80. | Lucia A, De La Rosa A, Silván MA, et al. Mobilisation of mesenchymal cells in cardiac patients: is intense exercise necessary?. Br J Sports Med, 2009, 43(3): 221-223. |
81. | Witkowski S, Jenkins NT, Hagberg JM. Enhancing treatment for cardiovascular disease: exercise and circulating angiogenic cells. Exerc Sport Sci Rev, 2011, 39(2): 93-101. |
82. | Ribeiro F, Ribeiro IP, Alves AJ, et al. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil, 2013, 92(11): 1020-1030. |
83. | Savitz SI, Cramer SC, Wechsler L, et al. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke, 2014, 45(2): 634-639. |
84. | Boltze J, Modo MM, Mays RW, et al. Stem cells as an emerging paradigm in stroke 4: advancing and accelerating preclinical research. Stroke, 2019, 50(11): 3299-3306. |
- 1. Greising SM, Call JA. Regenerative rehabilitation: from basic science to the clinic. Cham: Springer Nature, 2022.
- 2. Rose LF, Wolf EJ, Brindle T, et al. The convergence of regenerative medicine and rehabilitation: federal perspectives. NPJ Regen Med, 2018, 3(1): 19.
- 3. Head PL. Rehabilitation considerations in regenerative medicine. Phys Med Rehabil Clin N Am, 2016, 27(4): 1043-1054.
- 4. 付小兵, 程飚. 再生康复医学:新需求 新融合 新方向. 中华烧伤与创面修复杂志, 2018, 34(2): 65-68.
- 5. Daar AS, Greenwood HL. A proposed definition of regenerative medicine. J Tissue Eng Regen Med, 2007, 1(3): 179-184.
- 6. Atanelov L, Stiens SA, Young MA. History of physical medicine and rehabilitation and its ethical dimensions. AMA J Ethics, 2015, 17(6): 568-574.
- 7. Rodriguez AM, Elabd C, Amri EZ, et al. The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005, 87(1): 125-128.
- 8. Perez-Terzic C, Childers MK. Regenerative rehabilitation: a new future?. Am J Phys Med Rehabil, 2014, 93(11 Suppl 3): S73-S78.
- 9. Willett NJ, Boninger ML, Miller LJ, et al. Taking the next steps in regenerative rehabilitation: establishment of a new interdisciplinary field. Arch Phys Med Rehabil, 2020, 101(5): 917-923.
- 10. 付小兵. 组织再生:梦想、希望和挑战. 中国工程科学, 2009, 11(10): 122-128.
- 11. 付小兵. 对组织再生和再生医学发展的再思考. 中华烧伤杂志, 2011, 27(1): 1-2.
- 12. Budde H, Wegner M, Soya H, et al. Neuroscience of exercise: neuroplasticity and its behavioral consequences. Neural Plast, 2016, 2016: 3643879.
- 13. Grumbles RM, Liu Y, Thomas CM, et al. Acute stimulation of transplanted neurons improves motoneuron survival, axon growth, and muscle reinnervation. J Neurotrauma, 2013, 30(12): 1062-1069.
- 14. Kurimoto S, Kato S, Nakano T, et al. Transplantation of embryonic motor neurons into peripheral nerve combined with functional electrical stimulation restores functional muscle activity in the rat sciatic nerve transection model. J Tissue Eng Regen Med, 2016, 10(10): E477-E484.
- 15. Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol, 2022, 21(7): 659-670.
- 16. Canning CG, Allen NE, Nackaerts E, et al. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol, 2020, 16(8): 409-425.
- 17. Wang YY, Cheng J, Liu YD, et al. Exosome-based regenerative rehabilitation: a novel ice breaker for neurological disorders. Biomed Pharmacother, 2023, 169: 115920.
- 18. Červenka J, Tylečková J, Kupcová Skalníková H, et al. Proteomic characterization of human neural stem cells and their secretome during in vitro differentiation. Front Cell Neurosci, 2021, 14: 612560.
- 19. Centeno CJ, Pastoriza SM. Past, current and future interventional orthobiologics techniques and how they relate to regenerative rehabilitation: a clinical commentary. Int J Sports Phys Ther, 2020, 15(2): 301.
- 20. Xing Y, Bai Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms. Mol Neurobiol, 2020, 57(10): 4218-4231.
- 21. Szelenberger R, Kostka J, Saluk-Bijak J, et al. Pharmacological interventions and rehabilitation approach for enhancing brain self-repair and stroke recovery. Curr Neuropharmacol, 2020, 18(1): 51-64.
- 22. Zhang YX, Yuan MZ, Cheng L, et al. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci, 2015, 16: 1-8.
- 23. Ito A, Kubo N, Liang N, et al. Regenerative rehabilitation for stroke recovery by inducing synergistic effects of cell therapy and neurorehabilitation on motor function: a narrative review of pre-clinical studies. Int J Mol Sci, 2020, 21(9): 3135.
- 24. Lin L, Skakavac N, Lin X, et al. Acupuncture-induced analgesia: the role of microglial inhibition. Cell Transplant, 2016, 25(4): 621-628.
- 25. Iwasa SN, Babona-Pilipos R, Morshead CM. Environmental factors that influence stem cell migration: an “electric field”. Stem Cells Int, 2017, 2017: 4276927.
- 26. Emmons R, Niemiro GM, De Lisio M. Exercise as an adjuvant therapy for hematopoietic stem cell mobilization. Stem Cells Int, 2016, 2016: 7131359.
- 27. Wang Y, Gao Z, Zhang Y, et al. Attenuated reactive gliosis and enhanced functional recovery following spinal cord injury in null mutant mice of platelet-activating factor receptor. Mol Neurobiol, 2016, 53(5): 3448-3461.
- 28. Wang HF, Liu XK, Li R, et al. Effect of glial cells on remyelination after spinal cord injury. Neural Regen Res, 2017, 12(10): 1724-1732.
- 29. Moritz CT, Ambrosio F. Regenerative rehabilitation: combining stem cell therapies and activity-dependent stimulation. Pediatr Phys Ther, 2017, 29(Suppl 3): S10-S15.
- 30. Balbinot G. Neuromodulation to guide circuit reorganization with regenerative therapies in upper extremity rehabilitation following cervical spinal cord injury. Front Rehabil Sci, 2024, 4: 1320211.
- 31. Balbinot G, Li G, Gauthier C, et al. Functional electrical stimulation therapy for upper extremity rehabilitation following spinal cord injury: a pilot study. Spinal Cord Ser Cases, 2023, 9(1): 11.
- 32. Cataln LE, Villegas AM, Liber LT, et al. Synthesis of nine safrole derivatives and their antiproliferative activity towards human cancer cells. J Chil Chem Soc, 2010, 55(2): 219-222.
- 33. Tashiro S, Shinozaki M, Mukaino M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair, 2015, 29(7): 677-689.
- 34. Saunders D, Rose L. Regenerative rehabilitation of catastrophic extremity injury in military conflicts and a review of recent developmental efforts. Connect Tissue Res, 2021, 62(1): 83-98.
- 35. Ross HH, Ambrosio F, Trumbower RD, et al. Neural stem cell therapy and rehabilitation in the central nervous system: emerging partnerships. Phys Ther, 2016, 96(5): 734-742.
- 36. Gurjar AA, Manto KM, Estrada JA, et al. 4-aminopyridine: a single-dose diagnostic agent to differentiate axonal continuity in nerve injuries. Mil Med, 2021, 186(Suppl 1): 479-485.
- 37. Qi T, Zhang X, Gu X, et al. Experimental study on repairing peripheral nerve defects with novel bionic tissue engineering. Adv Healthc Mater, 2023, 12(17): e2203199.
- 38. Song J, Sun B, Liu S, et al. Polymerizing pyrrole coated poly (l-lactic acid-co-ε-caprolactone)(PLCL) conductive nanofibrous conduit combined with electric stimulation for long-range peripheral nerve regeneration. Front Mol Neurosci, 2016, 9: 117.
- 39. Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: the role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res, 2019, 37(6): 1263-1269.
- 40. Thompson WR, Scott A, Loghmani MT, et al. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther, 2016, 96(4): 560-569.
- 41. Cheuy V, Picciolini S, Bedoni M. Progressing the field of regenerative rehabilitation through novel interdisciplinary interaction. NPJ Regen Med, 2020, 5: 16.
- 42. Emery AE. The muscular dystrophies. Lancet, 2002, 359(9307): 687-695.
- 43. Bouchentouf M, Benabdallah BF, Mills P, et al. Exercise improves the success of myoblast transplantation in mdx mice. Neuromuscul Disord, 2006, 16(8): 518-529.
- 44. Call JA, McKeehen JN, Novotny SA, et al. Progressive resistance voluntary wheel running in the mdx mouse. Muscle Nerve, 2010, 42(6): 871-880.
- 45. Lindsay A, Larson AA, Verma M, et al. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. J Appl Physiol (1985), 2019, 126(2): 363-375.
- 46. Teixeira E, Duarte JA. Skeletal muscle loading changes its regenerative capacity. Sports Med, 2016, 46(6): 783-792.
- 47. Partridge TA, Morgan JE, Coulton GR, et al. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature, 1989, 337(6203): 176-179.
- 48. Gentile NE, Stearns KM, Brown EH, et al. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil, 2014, 93(11 Suppl 3): S79-S87.
- 49. Garg K, Ward CL, Hurtgen BJ, et al. Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J Orthop Res, 2015, 33(1): 40-46.
- 50. Dziki J, Badylak S, Yabroudi M, et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med, 2016, 1: 16008.
- 51. Greising SM, Corona BT, McGann C, et al. Therapeutic approaches for volumetric muscle loss injury: a systematic review and meta-analysis. Tissue Eng Part B Rev, 2019, 25(6): 510-525.
- 52. Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(2): 1081-1101.
- 53. Heckman JD, Ryaby JP, McCabe J, et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am, 1994, 76(1): 26-34.
- 54. Kristiansen TK, Ryaby JP, Mccabe J, et al. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. JBJS, 1997, 79(7): 961-973.
- 55. Kubiak EN, Beebe MJ, North K, et al. Early weight bearing after lower extremity fractures in adults. J Am Acad Orthop Surg, 2013, 21(12): 727-738.
- 56. Leppik L, Zhihua H, Mobini S, et al. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep, 2018, 8(1): 6307.
- 57. Hardy JG, Villancio-Wolter MK, Sukhavasi RC, et al. Electrical stimulation of human mesenchymal stem cells on conductive nanofibers enhances their differentiation toward osteogenic outcomes. Macromol Rapid Commun, 2015, 36(21): 1884-1890.
- 58. Cheung WH, Chin WC, Wei FY, et al. Applications of exogenous mesenchymal stem cells and low intensity pulsed ultrasound enhance fracture healing in rat model. Ultrasound Med Biol, 2013, 39(1): 117-125.
- 59. 任飞. 浅谈运动创伤研究的新进展. 科技信息, 2012(34): 443-444.
- 60. Boswell SG, Cole BJ, Sundman EA, et al. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy, 2012, 28(3): 429-439.
- 61. Kia C, Baldino J, Bell R, et al. Platelet-rich plasma: review of current literature on its use for tendon and ligament pathology. Curr Rev Musculoskelet Med, 2018, 11(4): 566-572.
- 62. 陈庆庆, 何红晨. 富血小板血浆促进创面愈合的研究进展. 中国烧伤创疡杂志, 2018, 30(1): 17-20.
- 63. 毛晓晖, 李昕阳. 富血小板血浆局部注射治疗肱骨外上髁炎的疗效观察. 临床医学进展, 2023, 13(6): 9522-9528.
- 64. Zhu S, Wang Z, Liang Q, et al. Chinese guidelines for the rehabilitation treatment of knee osteoarthritis: an CSPMR evidence-based practice guideline. J Evid Based Med, 2023, 16(3): 376-393.
- 65. 王谦, 何红晨. 基于富血小板血浆的再生康复技术在运动损伤中的应用. 中华创伤杂志, 2023, 39(9): 780-785.
- 66. Hamilton B, Tol JL, Knez W, et al. Exercise and the platelet activator calcium chloride both influence the growth factor content of platelet-rich plasma (PRP): overlooked biochemical factors that could influence PRP treatment. Br J Sports Med, 2015, 49(14): 957-960.
- 67. Tavakoli J, Torkaman G, Ravanbod R, et al. Regenerative effect of low-intensity pulsed ultrasound and platelet-rich plasma on the joint friction and biomechanical properties of cartilage: a non-traumatic osteoarthritis model in the guinea pig. Ultrasound Med Biol, 2022, 48(5): 862-871.
- 68. Paolucci T, Agostini F, Bernetti A, et al. Integration of focal vibration and intra-articular oxygen-ozone therapy in rehabilitation of painful knee osteoarthritis. J Int Med Res, 2021, 49(2): 300060520986705.
- 69. Fattorini L, Rodio A, Pettorossi VE, et al. Is the focal muscle vibration an effective motor conditioning intervention? A systematic review. J Funct Morphol Kinesiol, 2021, 6(2): 39.
- 70. Simão AP, Avelar NC, Tossige-Gomes R, et al. Functional performance and inflammatory cytokines after squat exercises and whole-body vibration in elderly individuals with knee osteoarthritis. Arch Phys Med Rehabil, 2012, 93(10): 1692-1700.
- 71. Wang P, Yang L, Liu C, et al. Effects of whole body vibration exercise associated with quadriceps resistance exercise on functioning and quality of life in patients with knee osteoarthritis: a randomized controlled trial. Clin Rehabil, 2016, 30(11): 1074-1087.
- 72. Juncosa-Melvin N, Shearn JT, Boivin GP, et al. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng, 2006, 12(8): 2291-2300.
- 73. Virchenko O, Aspenberg P. How can one platelet injection after tendon injury lead to a stronger tendon after 4 weeks? Interplay between early regeneration and mechanical stimulation. Acta Orthop, 2006, 77(5): 806-812.
- 74. Bayer ML, Schjerling P, Herchenhan A, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One, 2014, 9(1): e86078.
- 75. 王继兵, 尹正录, 孟兆祥, 等. 超声引导下自体富血小板血浆注射联合体外冲击波治疗肩袖损伤的临床研究. 实用老年医学, 2023, 37(7): 690-694.
- 76. Pang L, Xu Y, Li T, et al. Platelet-rich plasma injection can be a viable alternative to corticosteroid injection for conservative treatment of rotator cuff disease: a meta-analysis of randomized controlled trials. Arthroscopy, 2023, 39(2): 402-421.e1.
- 77. Suresh R, Chiriac A, Goel K, et al. CXCR4+ and FLK-1+ identify circulating cells associated with improved cardiac function in patients following myocardial infarction. J Cardiovasc Transl Res, 2013, 6(5): 787-797.
- 78. Wojakowski W, Landmesser U, Bachowski R, et al. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 2012, 26(1): 23-33.
- 79. Witkowski S, Lockard MM, Jenkins NT, et al. Relationship between circulating progenitor cells, vascular function and oxidative stress with long-term training and short-term detraining in older men. Clin Sci (Lond), 2010, 118(4): 303-311.
- 80. Lucia A, De La Rosa A, Silván MA, et al. Mobilisation of mesenchymal cells in cardiac patients: is intense exercise necessary?. Br J Sports Med, 2009, 43(3): 221-223.
- 81. Witkowski S, Jenkins NT, Hagberg JM. Enhancing treatment for cardiovascular disease: exercise and circulating angiogenic cells. Exerc Sport Sci Rev, 2011, 39(2): 93-101.
- 82. Ribeiro F, Ribeiro IP, Alves AJ, et al. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil, 2013, 92(11): 1020-1030.
- 83. Savitz SI, Cramer SC, Wechsler L, et al. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke, 2014, 45(2): 634-639.
- 84. Boltze J, Modo MM, Mays RW, et al. Stem cells as an emerging paradigm in stroke 4: advancing and accelerating preclinical research. Stroke, 2019, 50(11): 3299-3306.
-
Previous Article
外阴疣状癌合并外阴白斑一例 -
Next Article
Application of digital intellectualization technique in rehabilitation of spinal cord injury