1. |
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, et al. Gut-joint axis: gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol, 2023, 13: 1092118.
|
2. |
Attur M, Scher JU, Abramson SB, et al. Role of intestinal dysbiosis and nutrition in rheumatoid arthritis. Cells, 2022, 11(15): 2436.
|
3. |
Gilbert BTP, Tadeo RYT, Lamacchia C, et al. Gut microbiome and intestinal inflammation in preclinical stages of rheumatoid arthritis. RMD Open, 2024, 10(1): e003589.
|
4. |
Holers VM, Demoruelle MK, Kuhn KA, et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat Rev Rheumatol, 2018, 14(9): 542-557.
|
5. |
Zhou B, Xia X, Wang P, et al. Induction and amelioration of methotrexate-induced gastrointestinal toxicity are related to immune response and gut microbiota. EBioMedicine, 2018, 33: 122-133.
|
6. |
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol, 2023, 14: 1189036.
|
7. |
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346): 174-180.
|
8. |
Rooney CM, Mankia K, Emery P. The role of the microbiome in driving RA-related autoimmunity. Front Cell Dev Biol, 2020, 8: 538130.
|
9. |
Mangalea MR, Paez-Espino D, Kieft K, et al. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe, 2021, 29(5): 726-739.e5.
|
10. |
Wang X, Yuan W, Yang C, et al. Emerging role of gut microbiota in autoimmune diseases. Front Immunol, 2024, 15: 1365554.
|
11. |
Shin C, Kim YK. Autoimmunity in microbiome-mediated diseases and novel therapeutic approaches. Curr Opin Pharmacol, 2019, 49: 34-42.
|
12. |
Zhang X, Chen BD, Zhao LD, et al. The gut microbiota: emerging evidence in autoimmune diseases. Trends Mol Med, 2020, 26(9): 862-873.
|
13. |
Wang Y, Yin Y, Chen X, et al. Induction of intestinal Th17 cells by flagellins from segmented filamentous bacteria. Front Immunol, 2019, 10: 2750.
|
14. |
Li Y, Zhang SX, Yin XF, et al. The gut microbiota and its relevance to peripheral lymphocyte subpopulations and cytokines in patients with rheumatoid arthritis. J Immunol Res, 2021, 2021: 6665563.
|
15. |
Marazzato M, Iannuccelli C, Guzzo MP, et al. Gut microbiota structure and metabolites, before and after treatment in early rheumatoid arthritis patients: a pilot study. Front Med (Lausanne), 2022, 9: 921675.
|
16. |
Zhao T, Wei Y, Zhu Y, et al. Gut microbiota and rheumatoid arthritis: from pathogenesis to novel therapeutic opportunities. Front Immunol, 2022, 13: 1007165.
|
17. |
Sun Y, Chen Q, Lin P, et al. Characteristics of gut microbiota in patients with rheumatoid arthritis in Shanghai, China. Front Cell Infect Microbiol, 2019, 9: 369.
|
18. |
Narushima S, Sugiura Y, Oshima K, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes, 2014, 5(3): 333-339.
|
19. |
Chiang HI, Li JR, Liu CC, et al. An association of gut microbiota with different phenotypes in Chinese patients with rheumatoid arthritis. J Clin Med, 2019, 8(11): 1770.
|
20. |
Cheng H, Guan X, Chen D, et al. The Th17/Treg cell balance: a gut microbiota-modulated story. Microorganisms, 2019, 7(12): 583.
|
21. |
Wu R, Wang D, Cheng L, et al. Impaired immune tolerance mediated by reduced Tfr cells in rheumatoid arthritis linked to gut microbiota dysbiosis and altered metabolites. Arthritis Res Ther, 2024, 26(1): 21.
|
22. |
Xu X, Wang M, Wang Z, et al. The bridge of the gut-joint axis: gut microbial metabolites in rheumatoid arthritis. Front Immunol, 2022, 13: 1007610.
|
23. |
Foster KR, Schluter J, Coyte KZ, et al. The evolution of the host microbiome as an ecosystem on a leash. Nature, 2017, 548(7665): 43-51.
|
24. |
Audo R, Sanchez P, Rivière B, et al. Rheumatoid arthritis is associated with increased gut permeability and bacterial translocation which are reversed by inflammation control. Rheumatology (Oxford), 2022, 10: keac454.
|
25. |
Tajik N, Frech M, Schulz O, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun, 2020, 11(1): 1995.
|
26. |
Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362(6418): eaat9076.
|
27. |
Opoku YK, Asare KK, Ghartey-Quansah G, et al. Intestinal microbiome-rheumatoid arthritis crosstalk: the therapeutic role of probiotics. Front Microbiol, 2022, 13: 996031.
|
28. |
Brandl C, Bucci L, Schett G, et al. Crossing the barriers: revisiting the gut feeling in rheumatoid arthritis. Eur J Immunol, 2021, 51(4): 798-810.
|
29. |
Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann N Y Acad Sci, 2016, 1364(1): 11-24.
|
30. |
Zhou L, Zhang M, Wang Y, et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis, 2018, 24(9): 1926-1940.
|
31. |
Zhang M, Zhou L, Wang Y, et al. Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. Int Immunol, 2019, 31(8): 499-514.
|
32. |
Matei DE, Menon M, Alber DG, et al. Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med, 2021, 2(7): 864-883.e9.
|
33. |
Rashid T, Ebringer A. Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis, 2012, 2012: 539282.
|
34. |
Garabatos N, Santamaria P. Gut microbial antigenic mimicry in autoimmunity. Front Immunol, 2022, 13: 873607.
|
35. |
Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun, 2020, 107: 102360.
|
36. |
Pianta A, Arvikar SL, Strle K, et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J Clin Invest, 2017, 127(8): 2946-2956.
|
37. |
方灵芝, 曹格溪, 关丽叶, 等. 某院门诊甲氨蝶呤片超说明书使用的循证医学分析与管理. 中国现代应用药学, 2020, 37(16): 1993-1997.
|
38. |
Schiff MH, Sadowski P. Oral to subcutaneous methotrexate dose-conversion strategy in the treatment of rheumatoid arthritis. Rheumatol Int, 2017, 37(2): 213-218.
|
39. |
Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol, 2020, 16(3): 145-154.
|
40. |
Maksimovic V, Pavlovic-Popovic Z, Vukmirovic S, et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep, 2020, 47(6): 4699-4708.
|
41. |
Zaragoza-García O, Castro-Alarcón N, Pérez-Rubio G, et al. DMARDs-gut microbiota feedback: implications in the response to therapy. Biomolecules, 2020, 10(11): 1479.
|
42. |
Nayak RR, Alexander M, Deshpande I, et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe, 2021, 29(3): 362-377.e11.
|
43. |
Tang D, Zeng T, Wang Y, et al. Dietary restriction increases protective gut bacteria to rescue lethal methotrexate-induced intestinal toxicity. Gut Microbes, 2020, 12(1): 1714401.
|
44. |
Neumann VC, Shinebaum R, Cooke EM, et al. Effects of sulphasalazine on faecal flora in patients with rheumatoid arthritis: a comparison with penicillamine. Br J Rheumatol, 1987, 26(5): 334-337.
|
45. |
Rodrigues GSP, Cayres LCF, Gonçalves FP, et al. Detection of increased relative expression units of bacteroides and prevotella, and decreased Clostridium leptum in stool samples from brazilian rheumatoid arthritis patients: a pilot study. Microorganisms, 2019, 7(10): 413.
|
46. |
Gargaro AR, Soteriou A, Frenkiel TA, et al. The solution structure of the complex of Lactobacillus casei dihydrofolate reductase with methotrexate. J Mol Biol, 1998, 277(1): 119-134.
|
47. |
Huang X, Fang Q, Rao T, et al. Leucovorin ameliorated methotrexate induced intestinal toxicity via modulation of the gut microbiota. Toxicol Appl Pharmacol, 2020, 391: 114900.
|
48. |
Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife, 2013, 2: e01202.
|
49. |
Artacho A, Isaac S, Nayak R, et al. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. Arthritis Rheumatol, 2021, 73(6): 931-942.
|
50. |
Han M, Zhang N, Mao Y, et al. The potential of gut microbiota metabolic capability to detect drug response in rheumatoid arthritis patients. Front Microbiol, 2022, 13: 839015.
|
51. |
Pannu AK. Methotrexate overdose in clinical practice. Curr Drug Metab, 2019, 20(9): 714-719.
|
52. |
Yan H, Su R, Xue H, et al. Pharmacomicrobiology of methotrexate in rheumatoid arthritis: gut microbiome as predictor of therapeutic response. Front Immunol, 2021, 12: 789334.
|
53. |
Touchefeu Y, Montassier E, Nieman K, et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther, 2014, 40(5): 409-421.
|
54. |
Letertre MPM, Munjoma N, Wolfer K, et al. A two-way interaction between methotrexate and the gut microbiota of male Sprague-Dawley rats. J Proteome Res, 2020, 19(8): 3326-3339.
|
55. |
Higuchi T, Yoshimura M, Oka S, et al. Modulation of methotrexate-induced intestinal mucosal injury by dietary factors. Hum Exp Toxicol, 2020, 39(4): 500-513.
|
56. |
Scher JU, Nayak RR, Ubeda C, et al. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat Rev Rheumatol, 2020, 16(5): 282-292.
|
57. |
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 2018, 555(7698): 623-628.
|