Perioperative mechanical ventilation plays a role in lung injury and postoperative pulmonary complications, yet a consensus in the literature concerning the key clinical question of how to best provide lung protection during mechanical ventilation in surgical patients is lacking. It is necessary to develop an expert consensus on perioperative mechanical ventilation suitable for Chinese anesthesiologists to better guide clinical practice. The experts from the Anesthesia Committee of Chengdu Medical Association and the Chongqing Medical Association Anesthesiology Branch were organized by West China Hospital of Sichuan University to propose the question regarding the perioperative mechanical ventilation, and the current literature was then reviewed, and expert opinions were solicited to provide evidence-based guidance. Subsequently, the expert panel reached a consensus and formulated 28 recommendations with evidence of moderate to high quality using the modified Delphi method.
1. | 国家卫生健康委员会. 2022 中国卫生健康统计年鉴. 北京: 中国协和医科大学出版社, 2022. |
2. | Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth, 2017, 118(3): 317-334. |
3. | Mills GH. Respiratory complications of anaesthesia. Anaesthesia, 2018, 73(Suppl 1): 25-33. |
4. | Fernandez-Bustamante A, Frendl G, Sprung J, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: a multicenter study by the Perioperative Research Network Investigators. JAMA Surg, 2017, 152(2): 157-166. |
5. | LAS VEGAS investigators. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries. Eur J Anaesthesiol, 2017, 34(8): 492-507. |
6. | Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth, 2019, 123(6): 898-913. |
7. | 饶倩倩, 玉红, 王思洋, 等. 成年人非心胸手术中通气管理的临床实践: 一项全国问卷调查研究. 国际麻醉学与复苏杂志, 2024, 45(2): 168-173. |
8. | 饶倩倩, 玉红, 余海. 非心胸手术成年患者术中通气管理的临床实践: 一项区域问卷调查研究. 中华麻醉学杂志, 2021, 41(7): 852-857. |
9. | Atkins D, Eccles M, Flottorp S, et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. BMC Health Serv Res, 2004, 4(1): 38. |
10. | Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med, 2016, 37(4): 633-646. |
11. | Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med, 2013, 369(22): 2126-2136. |
12. | Sameed M, Choi H, Auron M, et al. Preoperative pulmonary risk assessment. Respir Care, 2021, 66(7): 1150-1166. |
13. | Qaseem A, Snow V, Fitterman N, et al. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. Ann Intern Med, 2006, 144(8): 575-580. |
14. | Canet J, Gallart L, Gomar C, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology, 2010, 113(6): 1338-1350. |
15. | Junaidi B, Hawrylak A, Kaw R. Evaluation and management of perioperative pulmonary complications. Med Clin North Am, 2024, 108(6): 1087-1100. |
16. | Lane S, Saunders D, Schofield A, et al. A prospective, randomised controlled trial comparing the efficacy of pre-oxygenation in the 20 degrees head-up vs supine position. Anaesthesia, 2005, 60(11): 1064-1067. |
17. | Ramkumar V, Umesh G, Philip FA. Preoxygenation with 20º head-up tilt provides longer duration of non-hypoxic apnea than conventional preoxygenation in non-obese healthy adults. J Anesth, 2011, 25(2): 189-194. |
18. | Couture EJ, Provencher S, Somma J, et al. Effect of position and positive pressure ventilation on functional residual capacity in morbidly obese patients: a randomized trial. Can J Anaesth, 2018, 65(5): 522-528. |
19. | Nimmagadda U, Salem MR, Crystal GJ. Preoxygenation: physiologic basis, benefits, and potential risks. Anesth Analg, 2017, 124(2): 507-517. |
20. | Mathew G, Manjuladevi M, Joachim N, et al. Effect of high fresh gas flow and pattern of breathing on rapid preoxygenation. Indian J Anaesth, 2022, 66(3): 213-219. |
21. | Nimmagadda U, Chiravuri SD, Salem MR, et al. Preoxygenation with tidal volume and deep breathing techniques: the impact of duration of breathing and fresh gas flow. Anesth Analg, 2001, 92(5): 1337-1341. |
22. | Edmark L, Kostova-Aherdan K, Enlund M, et al. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology, 2003, 98(1): 28-33. |
23. | Wong DT, Dallaire A, Singh KP, et al. High-flow nasal oxygen improves safe apnea time in morbidly obese patients undergoing general anesthesia: a randomized controlled trial. Anesth Analg, 2019, 129(4): 1130-1136. |
24. | Hao C, Ma X, Piao X, et al. Effects of positive end-expiratory pressure and oxygen concentration on non-hypoxemic apnea time during face mask ventilation of anesthesia induction: a randomized controlled trial. Front Physiol, 2023, 13: 1090612. |
25. | Cajander P, Edmark L, Ahlstrand R, et al. Effect of positive end-expiratory pressure on gastric insufflation during induction of anaesthesia when using pressure-controlled ventilation via a face mask: a randomised controlled trial. Eur J Anaesthesiol, 2019, 36(9): 625-632. |
26. | Bouvet L, Albert ML, Augris C, et al. Real-time detection of gastric insufflation related to facemask pressure-controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study. Anesthesiology, 2014, 120(2): 326-334. |
27. | Crístian de Carvalho C, Iliff HA, Santos Neto JM, et al. Effectiveness of preoxygenation strategies: a systematic review and network meta-analysis. Br J Anaesth, 2024, 133(1): 152-163. |
28. | Li J, Liu B, Zhou QH, et al. Pre-oxygenation with high-flow oxygen through the nasopharyngeal airway compared to facemask on carbon dioxide clearance in emergency adults: a prospective randomized non-blinded clinical trial. Eur J Trauma Emerg Surg, 2024, 50(3): 1051-1061. |
29. | Lee S, Choi JW, Chung IS, et al. Comparison of high-flow nasal cannula and conventional nasal cannula during deep sedation for endoscopic submucosal dissection: a randomized controlled trial. J Anesth, 2024, 38(5): 591-599. |
30. | Jo JY, Yoon J, Jang H, et al. Comparison of preoxygenation with a high-flow nasal cannula and a simple face mask before intubation in Korean patients with head and neck cancer. Acute Crit Care, 2024, 39(1): 61-69. |
31. | Ladha K, Vidal Melo MF, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ, 2015, 351: h3646. |
32. | Ferrando C, Soro M, Unzueta C, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med, 2018, 6(3): 193-203. |
33. | Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med, 2016, 4(4): 272-280. |
34. | Santer P, Wachtendorf LJ, Suleiman A, et al. Mechanical power during general anesthesia and postoperative respiratory failure: a multicenter retrospective cohort study. Anesthesiology, 2022, 137(1): 41-54. |
35. | Schick V, Dusse F, Eckardt R, et al. Comparison of volume-guaranteed or -targeted, pressure-controlled ventilation with volume-controlled ventilation during elective surgery: a systematic review and meta-analysis. J Clin Med, 2021, 10(6): 1276. |
36. | Li XF, Jin L, Yang JM, et al. Effect of ventilation mode on postoperative pulmonary complications following lung resection surgery: a randomised controlled trial. Anaesthesia, 2022, 77(11): 1219-1227. |
37. | Li X, Xu Y, Wang Z, et al. Effect of ventilation mode on postoperative pulmonary complications among intermediate- to high-risk patients undergoing abdominal surgery: a randomized controlled trial. Anaesth Crit Care Pain Med, 2024: 101423. |
38. | Li XF, Mao WJ, Jiang RJ, et al. Effect of mechanical ventilation mode type on postoperative pulmonary complications after cardiac surgery: a randomized controlled trial. J Cardiothorac Vasc Anesth, 2024, 38(2): 437-444. |
39. | Serpa Neto A, Hemmes SN, Barbas CS, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology, 2015, 123(1): 66-78. |
40. | Deng QW, Tan WC, Zhao BC, et al. Intraoperative ventilation strategies to prevent postoperative pulmonary complications: a network meta-analysis of randomised controlled trials. Br J Anaesth, 2020, 124(3): 324-335. |
41. | Martin DC, Richards GN. Predicted body weight relationships for protective ventilation - unisex proposals from pre-term through to adult. BMC Pulm Med, 2017, 17(1): 85. |
42. | Linares-Perdomo O, East TD, Brower R, et al. Standardizing predicted body weight equations for mechanical ventilation tidal volume settings. Chest, 2015, 148(1): 73-78. |
43. | PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, et al. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet, 2014, 384(9942): 495-503. |
44. | Bluth T, Serpa Neto A, Schultz MJ, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA, 2019, 321(23): 2292-2305. |
45. | Sahetya SK. Searching for the optimal positive end-expiratory pressure for lung protective ventilation. Curr Opin Crit Care, 2020, 26(1): 53-58. |
46. | Pereira SM, Tucci MR, Morais CCA, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology, 2018, 129(6): 1070-1081. |
47. | Girrbach F, Petroff D, Schulz S, et al. Individualised positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: a prospective, randomised controlled clinical trial. Br J Anaesth, 2020, 125(3): 373-382. |
48. | Park M, Yoon S, Nam JS, et al. Driving pressure-guided ventilation and postoperative pulmonary complications in thoracic surgery: a multicentre randomised clinical trial. Br J Anaesth, 2023, 130(1): e106-e118. |
49. | Ma X, Fu Y, Piao X, et al. Individualised positive end-expiratory pressure titrated intra-operatively by electrical impedance tomography optimises pulmonary mechanics and reduces postoperative atelectasis: a randomised controlled trial. Eur J Anaesthesiol, 2023, 40(11): 805-816. |
50. | Li Y, Xu W, Cui Y, et al. Effects of driving pressure-guided ventilation by individualized positive end-expiratory pressure on oxygenation undergoing robot-assisted laparoscopic radical prostatectomy: a randomized controlled clinical trial. J Anesth, 2023, 37(6): 896-904. |
51. | D’Antini D, Huhle R, Herrmann J, et al. Respiratory system mechanics during low versus high positive end-expiratory pressure in open abdominal surgery: a substudy of PROVHILO randomized controlled trial. Anesth Analg, 2018, 126(1): 143-149. |
52. | Futier E, Constantin JM, Pelosi P, et al. Intraoperative recruitment maneuver reverses detrimental pneumoperitoneum-induced respiratory effects in healthy weight and obese patients undergoing laparoscopy. Anesthesiology, 2010, 113(6): 1310-1319. |
53. | Costa Leme A, Hajjar LA, Volpe MS, et al. Effect of intensive vs moderate alveolar recruitment strategies added to lung-protective ventilation on postoperative pulmonary complications: a randomized clinical trial. JAMA, 2017, 317(14): 1422-1432. |
54. | Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology, 2015, 123(3): 692-713. |
55. | Godet T, Constantin JM, Jaber S, et al. How to monitor a recruitment maneuver at the bedside. Curr Opin Crit Care, 2015, 21(3): 253-258. |
56. | Liu T, Huang J, Wang X, et al. Effect of recruitment manoeuvres under lung ultrasound-guidance and positive end-expiratory pressure on postoperative atelectasis and hypoxemia in major open upper abdominal surgery: a randomized controlled trial. Heliyon, 2023, 9(2): e13348. |
57. | Lim SC, Adams AB, Simonson DA, et al. Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med, 2004, 32(12): 2378-2384. |
58. | Park JH, Lee JS, Lee JH, et al. Effect of the prolonged inspiratory to expiratory ratio on oxygenation and respiratory mechanics during surgical procedures. Medicine (Baltimore), 2016, 95(13): e3269. |
59. | Kim MS, Kim NY, Lee KY, et al. The impact of two different inspiratory to expiratory ratios (1: 1 and 1: 2) on respiratory mechanics and oxygenation during volume-controlled ventilation in robot-assisted laparoscopic radical prostatectomy: a randomized controlled trial. Can J Anaesth, 2015, 62(9): 979-987. |
60. | Hirabayashi G, Ogihara Y, Tsukakoshi S, et al. Effect of pressure-controlled inverse ratio ventilation on dead space during robot-assisted laparoscopic radical prostatectomy: a randomised crossover study of three different ventilator modes. Eur J Anaesthesiol, 2018, 35(4): 307-314. |
61. | Tuncalı B, Erol V, Zeyneloğlu P. Effects of volume-controlled equal ratio ventilation with recruitment maneuver and positive end-expiratory pressure in laparoscopic sleeve gastrectomy: a prospective, randomized, controlled trial. Turk J Med Sci, 2018, 48(4): 768-776. |
62. | Jinghua W, Xiong N, Min L. The effect of inverse ratio ventilation on cardiopulmonary function in obese laparoscopic surgery patients: a systematic review and meta-analysis. Saudi J Anaesth, 2024, 18(1): 77-85. |
63. | O’Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax, 2017, 72(Suppl 1): ii1-ii90. |
64. | Anderson KJ, Harten JM, Booth MG, et al. The cardiovascular effects of inspired oxygen fraction in anaesthetized patients. Eur J Anaesthesiol, 2005, 22(6): 420-425. |
65. | Oldman AH, Martin DS, Feelisch M, et al. Effects of perioperative oxygen concentration on oxidative stress in adult surgical patients: a systematic review. Br J Anaesth, 2021, 126(3): 622-632. |
66. | Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br J Anaesth, 2017, 119(1): 140-149. |
67. | Wetterslev J, Meyhoff CS, Jørgensen LN, et al. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev, 2015, 2015(6): Cd008884. |
68. | Park M, Jung K, Sim WS, et al. Perioperative high inspired oxygen fraction induces atelectasis in patients undergoing abdominal surgery: a randomized controlled trial. J Clin Anesth, 2021, 72: 110285. |
69. | Lim CH, Han JY, Cha SH, et al. Effects of high versus low inspiratory oxygen fraction on postoperative clinical outcomes in patients undergoing surgery under general anesthesia: a systematic review and meta-analysis of randomized controlled trials. J Clin Anesth, 2021, 75: 110461. |
70. | Li XF, Jiang D, Jiang YL, et al. Comparison of low and high inspiratory oxygen fraction added to lung-protective ventilation on postoperative pulmonary complications after abdominal surgery: a randomized controlled trial. J Clin Anesth, 2020, 67: 110009. |
71. | Yu X, Zhai Z, Zhao Y, et al. Performance of lung ultrasound in detecting peri-operative atelectasis after general anesthesia. Ultrasound Med Biol, 2016, 42(12): 2775-2784. |
72. | 费菲, 庄蕙嘉, 石薇, 等. 肺部超声对成年患者术后肺不张、胸腔积液和气胸诊断价值的 meta 分析. 中华麻醉学杂志, 2023, 43(7): 802-808. |
73. | Weber J, Gutjahr J, Schmidt J, et al. Effect of individualized PEEP titration guided by intratidal compliance profile analysis on regional ventilation assessed by electrical impedance tomography - a randomized controlled trial. BMC Anesthesiol, 2020, 20(1): 42. |
74. | Scaramuzzo G, Karbing DS, Ball L, et al. Intraoperative ventilation/perfusion mismatch and postoperative pulmonary complications after major noncardiac surgery: a prospective cohort study. Anesthesiology, 2024, 141(4): 693-706. |
75. | Jeong H, Tanatporn P, Ahn HJ, et al. Pressure support versus spontaneous ventilation during anesthetic emergence-effect on postoperative atelectasis: a randomized controlled trial. Anesthesiology, 2021, 135(6): 1004-1014. |
76. | Blackwood B, Burns KE, Cardwell CR, et al. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev, 2014, 2014(11): Cd006904. |
77. | Benoît Z, Wicky S, Fischer JF, et al. The effect of increased FIO2 before tracheal extubation on postoperative atelectasis. Anesth Analg, 2002, 95(6): 1777-1781. |
78. | Kleinsasser AT, Pircher I, Truebsbach S, et al. Pulmonary function after emergence on 100% oxygen in patients with chronic obstructive pulmonary disease: a randomized, controlled trial. Anesthesiology, 2014, 120(5): 1146-1151. |
79. | Wang X, Guo K, Sun J, et al. Semirecumbent positioning during anesthesia recovery and postoperative hypoxemia: a randomized clinical trial. JAMA Netw Open, 2024, 7(6): e2416797. |
80. | Ireland CJ, Chapman TM, Mathew SF, et al. Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev, 2014, 2014(8): Cd008930. |
81. | Guimarães J, Pinho D, Nunes CS, et al. Effect of Boussignac continuous positive airway pressure ventilation on Pao2 and Pao2/Fio2 ratio immediately after extubation in morbidly obese patients undergoing bariatric surgery: a randomized controlled trial. J Clin Anesth, 2016, 34: 562-570. |
82. | Chaudhuri D, Granton D, Wang DX, et al. High-flow nasal cannula in the immediate postoperative period: a systematic review and meta-analysis. Chest, 2020, 158(5): 1934-1946. |
83. | Xiang GL, Wu QH, Xie L, et al. High flow nasal cannula versus conventional oxygen therapy in postoperative patients at high risk for pulmonary complications: a systematic review and meta-analysis. Int J Clin Pract, 2021, 75(3): e13828. |
84. | Östberg E, Thorisson A, Enlund M, et al. Positive end-expiratory pressure and postoperative atelectasis: a randomized controlled trial. Anesthesiology, 2019, 131(4): 809-817. |
85. | Abrard S, Rineau E, Seegers V, et al. Postoperative prophylactic intermittent noninvasive ventilation versus usual postoperative care for patients at high risk of pulmonary complications: a multicentre randomised trial. Br J Anaesth, 2023, 130(1): e160-e168. |
86. | Pettenuzzo T, Boscolo A, Pistollato E, et al. Effects of non-invasive respiratory support in post-operative patients: a systematic review and network meta-analysis. Crit Care, 2024, 28(1): 152. |
87. | Catoire P, Tellier E, de la Rivière C, et al. Assessment of the SpO2/FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med, 2021, 44: 116-120. |
88. | Schmidt M, Rössler J, Brooker J, et al. Postoperative oxygenation assessed by SpO2/FiO2 ratio and respiratory complications after reversal of neuromuscular block with Sugammadex or neostigmine: a retrospective cohort study. J Clin Anesth, 2023, 88: 111138. |
89. | Wang J, Zeng J, Zhang C, et al. Optimized ventilation strategy for surgery on patients with obesity from the perspective of lung protection: a network meta-analysis. Front Immunol, 2022, 13: 1032783. |
90. | Chen C, Shang P, Yao Y, et al. Positive end-expiratory pressure and postoperative pulmonary complications in laparoscopic bariatric surgery: systematic review and meta-analysis. BMC Anesthesiol, 2024, 24(1): 282. |
91. | Grieco DL, Anzellotti GM, Russo A, et al. Airway closure during surgical pneumoperitoneum in obese patients. Anesthesiology, 2019, 131(1): 58-73. |
92. | De Jong A, Rollé A, Souche FR, et al. How can I manage anaesthesia in obese patients?. Anaesth Crit Care Pain Med, 2020, 39(2): 229-238. |
93. | Hepner DL, Castells MC. Anaphylaxis during the perioperative period. Anesth Analg, 2003, 97(5): 1381-1395. |
94. | Lin CS, Chang CC, Yeh CC, et al. Postoperative adverse outcomes in patients with asthma: a nationwide population-based cohort study. Medicine (Baltim), 2016, 95(3): e2548. |
95. | Bayable SD, Melesse DY, Lema GF, et al. Perioperative management of patients with asthma during elective surgery: a systematic review. Ann Med Surg (Lond), 2021, 70: 102874. |
96. | Laher AE, Buchanan SK. Mechanically ventilating the severe asthmatic. J Intensive Care Med, 2018, 33(9): 491-501. |
97. | Chang S, Shi J, Fu C, et al. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1023-1029. |
98. | 吴江东, 杜学柯, 陈丽妮, 等. 不同机械通气模式对合并轻中度慢性阻塞性肺疾病老年患者腹腔镜下胆囊切除术后肺氧合功能的影响. 广西医学, 2022, 44: 717-723. |
99. | Park S, Oh EJ, Han S, et al. Intraoperative anesthetic management of patients with chronic obstructive pulmonary disease to decrease the risk of postoperative pulmonary complications after abdominal surgery. J Clin Med, 2020, 9(1): 150. |
100. | Mosier JM, Hypes CD. Mechanical ventilation strategies for the patient with severe obstructive lung disease. Emerg Med Clin North Am, 2019, 37(3): 445-458. |
101. | Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care, 2019, 9(1): 69. |
102. | 熊伟, 陈萍, 高进, 等. 肺保护性通气在中老年脊柱俯卧位手术中的应用: 随机对照试验. 南方医科大学学报, 2016, 36(2): 215-219. |
103. | Wang J, Zhu L, Li Y, et al. The potential role of lung-protective ventilation in preventing postoperative delirium in elderly patients undergoing prone spinal surgery: a preliminary study. Med Sci Monit, 2020, 26: e926526. |
104. | Tao Y, Ma G, Sun T, et al. Effect of target-controlled pressure-controlled ventilation on percutaneous nephrolithotripsy patients under general anesthesia: a retrospective study. Transl Androl Urol, 2023, 12(5): 727-735. |
105. | Han J, Hu Y, Liu S, et al. Volume-controlled ventilation versus pressure-controlled ventilation during spine surgery in the prone position: a meta-analysis. Ann Med Surg (Lond), 2022, 78: 103878. |
106. | Grieco DL, Russo A, Anzellotti GM, et al. Lung-protective ventilation during Trendelenburg pneumoperitoneum surgery: a randomized clinical trial. J Clin Anesth, 2023, 85: 111037. |
107. | De Meyer GRA, Morrison SG, Saldien V, et al. Minimizing lung injury during laparoscopy in head-down tilt: a physiological cohort study. Anesth Analg, 2023, 137(4): 841-849. |
- 1. 国家卫生健康委员会. 2022 中国卫生健康统计年鉴. 北京: 中国协和医科大学出版社, 2022.
- 2. Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth, 2017, 118(3): 317-334.
- 3. Mills GH. Respiratory complications of anaesthesia. Anaesthesia, 2018, 73(Suppl 1): 25-33.
- 4. Fernandez-Bustamante A, Frendl G, Sprung J, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: a multicenter study by the Perioperative Research Network Investigators. JAMA Surg, 2017, 152(2): 157-166.
- 5. LAS VEGAS investigators. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries. Eur J Anaesthesiol, 2017, 34(8): 492-507.
- 6. Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth, 2019, 123(6): 898-913.
- 7. 饶倩倩, 玉红, 王思洋, 等. 成年人非心胸手术中通气管理的临床实践: 一项全国问卷调查研究. 国际麻醉学与复苏杂志, 2024, 45(2): 168-173.
- 8. 饶倩倩, 玉红, 余海. 非心胸手术成年患者术中通气管理的临床实践: 一项区域问卷调查研究. 中华麻醉学杂志, 2021, 41(7): 852-857.
- 9. Atkins D, Eccles M, Flottorp S, et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. BMC Health Serv Res, 2004, 4(1): 38.
- 10. Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med, 2016, 37(4): 633-646.
- 11. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med, 2013, 369(22): 2126-2136.
- 12. Sameed M, Choi H, Auron M, et al. Preoperative pulmonary risk assessment. Respir Care, 2021, 66(7): 1150-1166.
- 13. Qaseem A, Snow V, Fitterman N, et al. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. Ann Intern Med, 2006, 144(8): 575-580.
- 14. Canet J, Gallart L, Gomar C, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology, 2010, 113(6): 1338-1350.
- 15. Junaidi B, Hawrylak A, Kaw R. Evaluation and management of perioperative pulmonary complications. Med Clin North Am, 2024, 108(6): 1087-1100.
- 16. Lane S, Saunders D, Schofield A, et al. A prospective, randomised controlled trial comparing the efficacy of pre-oxygenation in the 20 degrees head-up vs supine position. Anaesthesia, 2005, 60(11): 1064-1067.
- 17. Ramkumar V, Umesh G, Philip FA. Preoxygenation with 20º head-up tilt provides longer duration of non-hypoxic apnea than conventional preoxygenation in non-obese healthy adults. J Anesth, 2011, 25(2): 189-194.
- 18. Couture EJ, Provencher S, Somma J, et al. Effect of position and positive pressure ventilation on functional residual capacity in morbidly obese patients: a randomized trial. Can J Anaesth, 2018, 65(5): 522-528.
- 19. Nimmagadda U, Salem MR, Crystal GJ. Preoxygenation: physiologic basis, benefits, and potential risks. Anesth Analg, 2017, 124(2): 507-517.
- 20. Mathew G, Manjuladevi M, Joachim N, et al. Effect of high fresh gas flow and pattern of breathing on rapid preoxygenation. Indian J Anaesth, 2022, 66(3): 213-219.
- 21. Nimmagadda U, Chiravuri SD, Salem MR, et al. Preoxygenation with tidal volume and deep breathing techniques: the impact of duration of breathing and fresh gas flow. Anesth Analg, 2001, 92(5): 1337-1341.
- 22. Edmark L, Kostova-Aherdan K, Enlund M, et al. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology, 2003, 98(1): 28-33.
- 23. Wong DT, Dallaire A, Singh KP, et al. High-flow nasal oxygen improves safe apnea time in morbidly obese patients undergoing general anesthesia: a randomized controlled trial. Anesth Analg, 2019, 129(4): 1130-1136.
- 24. Hao C, Ma X, Piao X, et al. Effects of positive end-expiratory pressure and oxygen concentration on non-hypoxemic apnea time during face mask ventilation of anesthesia induction: a randomized controlled trial. Front Physiol, 2023, 13: 1090612.
- 25. Cajander P, Edmark L, Ahlstrand R, et al. Effect of positive end-expiratory pressure on gastric insufflation during induction of anaesthesia when using pressure-controlled ventilation via a face mask: a randomised controlled trial. Eur J Anaesthesiol, 2019, 36(9): 625-632.
- 26. Bouvet L, Albert ML, Augris C, et al. Real-time detection of gastric insufflation related to facemask pressure-controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study. Anesthesiology, 2014, 120(2): 326-334.
- 27. Crístian de Carvalho C, Iliff HA, Santos Neto JM, et al. Effectiveness of preoxygenation strategies: a systematic review and network meta-analysis. Br J Anaesth, 2024, 133(1): 152-163.
- 28. Li J, Liu B, Zhou QH, et al. Pre-oxygenation with high-flow oxygen through the nasopharyngeal airway compared to facemask on carbon dioxide clearance in emergency adults: a prospective randomized non-blinded clinical trial. Eur J Trauma Emerg Surg, 2024, 50(3): 1051-1061.
- 29. Lee S, Choi JW, Chung IS, et al. Comparison of high-flow nasal cannula and conventional nasal cannula during deep sedation for endoscopic submucosal dissection: a randomized controlled trial. J Anesth, 2024, 38(5): 591-599.
- 30. Jo JY, Yoon J, Jang H, et al. Comparison of preoxygenation with a high-flow nasal cannula and a simple face mask before intubation in Korean patients with head and neck cancer. Acute Crit Care, 2024, 39(1): 61-69.
- 31. Ladha K, Vidal Melo MF, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ, 2015, 351: h3646.
- 32. Ferrando C, Soro M, Unzueta C, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med, 2018, 6(3): 193-203.
- 33. Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med, 2016, 4(4): 272-280.
- 34. Santer P, Wachtendorf LJ, Suleiman A, et al. Mechanical power during general anesthesia and postoperative respiratory failure: a multicenter retrospective cohort study. Anesthesiology, 2022, 137(1): 41-54.
- 35. Schick V, Dusse F, Eckardt R, et al. Comparison of volume-guaranteed or -targeted, pressure-controlled ventilation with volume-controlled ventilation during elective surgery: a systematic review and meta-analysis. J Clin Med, 2021, 10(6): 1276.
- 36. Li XF, Jin L, Yang JM, et al. Effect of ventilation mode on postoperative pulmonary complications following lung resection surgery: a randomised controlled trial. Anaesthesia, 2022, 77(11): 1219-1227.
- 37. Li X, Xu Y, Wang Z, et al. Effect of ventilation mode on postoperative pulmonary complications among intermediate- to high-risk patients undergoing abdominal surgery: a randomized controlled trial. Anaesth Crit Care Pain Med, 2024: 101423.
- 38. Li XF, Mao WJ, Jiang RJ, et al. Effect of mechanical ventilation mode type on postoperative pulmonary complications after cardiac surgery: a randomized controlled trial. J Cardiothorac Vasc Anesth, 2024, 38(2): 437-444.
- 39. Serpa Neto A, Hemmes SN, Barbas CS, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology, 2015, 123(1): 66-78.
- 40. Deng QW, Tan WC, Zhao BC, et al. Intraoperative ventilation strategies to prevent postoperative pulmonary complications: a network meta-analysis of randomised controlled trials. Br J Anaesth, 2020, 124(3): 324-335.
- 41. Martin DC, Richards GN. Predicted body weight relationships for protective ventilation - unisex proposals from pre-term through to adult. BMC Pulm Med, 2017, 17(1): 85.
- 42. Linares-Perdomo O, East TD, Brower R, et al. Standardizing predicted body weight equations for mechanical ventilation tidal volume settings. Chest, 2015, 148(1): 73-78.
- 43. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, et al. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet, 2014, 384(9942): 495-503.
- 44. Bluth T, Serpa Neto A, Schultz MJ, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA, 2019, 321(23): 2292-2305.
- 45. Sahetya SK. Searching for the optimal positive end-expiratory pressure for lung protective ventilation. Curr Opin Crit Care, 2020, 26(1): 53-58.
- 46. Pereira SM, Tucci MR, Morais CCA, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology, 2018, 129(6): 1070-1081.
- 47. Girrbach F, Petroff D, Schulz S, et al. Individualised positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: a prospective, randomised controlled clinical trial. Br J Anaesth, 2020, 125(3): 373-382.
- 48. Park M, Yoon S, Nam JS, et al. Driving pressure-guided ventilation and postoperative pulmonary complications in thoracic surgery: a multicentre randomised clinical trial. Br J Anaesth, 2023, 130(1): e106-e118.
- 49. Ma X, Fu Y, Piao X, et al. Individualised positive end-expiratory pressure titrated intra-operatively by electrical impedance tomography optimises pulmonary mechanics and reduces postoperative atelectasis: a randomised controlled trial. Eur J Anaesthesiol, 2023, 40(11): 805-816.
- 50. Li Y, Xu W, Cui Y, et al. Effects of driving pressure-guided ventilation by individualized positive end-expiratory pressure on oxygenation undergoing robot-assisted laparoscopic radical prostatectomy: a randomized controlled clinical trial. J Anesth, 2023, 37(6): 896-904.
- 51. D’Antini D, Huhle R, Herrmann J, et al. Respiratory system mechanics during low versus high positive end-expiratory pressure in open abdominal surgery: a substudy of PROVHILO randomized controlled trial. Anesth Analg, 2018, 126(1): 143-149.
- 52. Futier E, Constantin JM, Pelosi P, et al. Intraoperative recruitment maneuver reverses detrimental pneumoperitoneum-induced respiratory effects in healthy weight and obese patients undergoing laparoscopy. Anesthesiology, 2010, 113(6): 1310-1319.
- 53. Costa Leme A, Hajjar LA, Volpe MS, et al. Effect of intensive vs moderate alveolar recruitment strategies added to lung-protective ventilation on postoperative pulmonary complications: a randomized clinical trial. JAMA, 2017, 317(14): 1422-1432.
- 54. Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology, 2015, 123(3): 692-713.
- 55. Godet T, Constantin JM, Jaber S, et al. How to monitor a recruitment maneuver at the bedside. Curr Opin Crit Care, 2015, 21(3): 253-258.
- 56. Liu T, Huang J, Wang X, et al. Effect of recruitment manoeuvres under lung ultrasound-guidance and positive end-expiratory pressure on postoperative atelectasis and hypoxemia in major open upper abdominal surgery: a randomized controlled trial. Heliyon, 2023, 9(2): e13348.
- 57. Lim SC, Adams AB, Simonson DA, et al. Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med, 2004, 32(12): 2378-2384.
- 58. Park JH, Lee JS, Lee JH, et al. Effect of the prolonged inspiratory to expiratory ratio on oxygenation and respiratory mechanics during surgical procedures. Medicine (Baltimore), 2016, 95(13): e3269.
- 59. Kim MS, Kim NY, Lee KY, et al. The impact of two different inspiratory to expiratory ratios (1: 1 and 1: 2) on respiratory mechanics and oxygenation during volume-controlled ventilation in robot-assisted laparoscopic radical prostatectomy: a randomized controlled trial. Can J Anaesth, 2015, 62(9): 979-987.
- 60. Hirabayashi G, Ogihara Y, Tsukakoshi S, et al. Effect of pressure-controlled inverse ratio ventilation on dead space during robot-assisted laparoscopic radical prostatectomy: a randomised crossover study of three different ventilator modes. Eur J Anaesthesiol, 2018, 35(4): 307-314.
- 61. Tuncalı B, Erol V, Zeyneloğlu P. Effects of volume-controlled equal ratio ventilation with recruitment maneuver and positive end-expiratory pressure in laparoscopic sleeve gastrectomy: a prospective, randomized, controlled trial. Turk J Med Sci, 2018, 48(4): 768-776.
- 62. Jinghua W, Xiong N, Min L. The effect of inverse ratio ventilation on cardiopulmonary function in obese laparoscopic surgery patients: a systematic review and meta-analysis. Saudi J Anaesth, 2024, 18(1): 77-85.
- 63. O’Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax, 2017, 72(Suppl 1): ii1-ii90.
- 64. Anderson KJ, Harten JM, Booth MG, et al. The cardiovascular effects of inspired oxygen fraction in anaesthetized patients. Eur J Anaesthesiol, 2005, 22(6): 420-425.
- 65. Oldman AH, Martin DS, Feelisch M, et al. Effects of perioperative oxygen concentration on oxidative stress in adult surgical patients: a systematic review. Br J Anaesth, 2021, 126(3): 622-632.
- 66. Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br J Anaesth, 2017, 119(1): 140-149.
- 67. Wetterslev J, Meyhoff CS, Jørgensen LN, et al. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev, 2015, 2015(6): Cd008884.
- 68. Park M, Jung K, Sim WS, et al. Perioperative high inspired oxygen fraction induces atelectasis in patients undergoing abdominal surgery: a randomized controlled trial. J Clin Anesth, 2021, 72: 110285.
- 69. Lim CH, Han JY, Cha SH, et al. Effects of high versus low inspiratory oxygen fraction on postoperative clinical outcomes in patients undergoing surgery under general anesthesia: a systematic review and meta-analysis of randomized controlled trials. J Clin Anesth, 2021, 75: 110461.
- 70. Li XF, Jiang D, Jiang YL, et al. Comparison of low and high inspiratory oxygen fraction added to lung-protective ventilation on postoperative pulmonary complications after abdominal surgery: a randomized controlled trial. J Clin Anesth, 2020, 67: 110009.
- 71. Yu X, Zhai Z, Zhao Y, et al. Performance of lung ultrasound in detecting peri-operative atelectasis after general anesthesia. Ultrasound Med Biol, 2016, 42(12): 2775-2784.
- 72. 费菲, 庄蕙嘉, 石薇, 等. 肺部超声对成年患者术后肺不张、胸腔积液和气胸诊断价值的 meta 分析. 中华麻醉学杂志, 2023, 43(7): 802-808.
- 73. Weber J, Gutjahr J, Schmidt J, et al. Effect of individualized PEEP titration guided by intratidal compliance profile analysis on regional ventilation assessed by electrical impedance tomography - a randomized controlled trial. BMC Anesthesiol, 2020, 20(1): 42.
- 74. Scaramuzzo G, Karbing DS, Ball L, et al. Intraoperative ventilation/perfusion mismatch and postoperative pulmonary complications after major noncardiac surgery: a prospective cohort study. Anesthesiology, 2024, 141(4): 693-706.
- 75. Jeong H, Tanatporn P, Ahn HJ, et al. Pressure support versus spontaneous ventilation during anesthetic emergence-effect on postoperative atelectasis: a randomized controlled trial. Anesthesiology, 2021, 135(6): 1004-1014.
- 76. Blackwood B, Burns KE, Cardwell CR, et al. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev, 2014, 2014(11): Cd006904.
- 77. Benoît Z, Wicky S, Fischer JF, et al. The effect of increased FIO2 before tracheal extubation on postoperative atelectasis. Anesth Analg, 2002, 95(6): 1777-1781.
- 78. Kleinsasser AT, Pircher I, Truebsbach S, et al. Pulmonary function after emergence on 100% oxygen in patients with chronic obstructive pulmonary disease: a randomized, controlled trial. Anesthesiology, 2014, 120(5): 1146-1151.
- 79. Wang X, Guo K, Sun J, et al. Semirecumbent positioning during anesthesia recovery and postoperative hypoxemia: a randomized clinical trial. JAMA Netw Open, 2024, 7(6): e2416797.
- 80. Ireland CJ, Chapman TM, Mathew SF, et al. Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev, 2014, 2014(8): Cd008930.
- 81. Guimarães J, Pinho D, Nunes CS, et al. Effect of Boussignac continuous positive airway pressure ventilation on Pao2 and Pao2/Fio2 ratio immediately after extubation in morbidly obese patients undergoing bariatric surgery: a randomized controlled trial. J Clin Anesth, 2016, 34: 562-570.
- 82. Chaudhuri D, Granton D, Wang DX, et al. High-flow nasal cannula in the immediate postoperative period: a systematic review and meta-analysis. Chest, 2020, 158(5): 1934-1946.
- 83. Xiang GL, Wu QH, Xie L, et al. High flow nasal cannula versus conventional oxygen therapy in postoperative patients at high risk for pulmonary complications: a systematic review and meta-analysis. Int J Clin Pract, 2021, 75(3): e13828.
- 84. Östberg E, Thorisson A, Enlund M, et al. Positive end-expiratory pressure and postoperative atelectasis: a randomized controlled trial. Anesthesiology, 2019, 131(4): 809-817.
- 85. Abrard S, Rineau E, Seegers V, et al. Postoperative prophylactic intermittent noninvasive ventilation versus usual postoperative care for patients at high risk of pulmonary complications: a multicentre randomised trial. Br J Anaesth, 2023, 130(1): e160-e168.
- 86. Pettenuzzo T, Boscolo A, Pistollato E, et al. Effects of non-invasive respiratory support in post-operative patients: a systematic review and network meta-analysis. Crit Care, 2024, 28(1): 152.
- 87. Catoire P, Tellier E, de la Rivière C, et al. Assessment of the SpO2/FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med, 2021, 44: 116-120.
- 88. Schmidt M, Rössler J, Brooker J, et al. Postoperative oxygenation assessed by SpO2/FiO2 ratio and respiratory complications after reversal of neuromuscular block with Sugammadex or neostigmine: a retrospective cohort study. J Clin Anesth, 2023, 88: 111138.
- 89. Wang J, Zeng J, Zhang C, et al. Optimized ventilation strategy for surgery on patients with obesity from the perspective of lung protection: a network meta-analysis. Front Immunol, 2022, 13: 1032783.
- 90. Chen C, Shang P, Yao Y, et al. Positive end-expiratory pressure and postoperative pulmonary complications in laparoscopic bariatric surgery: systematic review and meta-analysis. BMC Anesthesiol, 2024, 24(1): 282.
- 91. Grieco DL, Anzellotti GM, Russo A, et al. Airway closure during surgical pneumoperitoneum in obese patients. Anesthesiology, 2019, 131(1): 58-73.
- 92. De Jong A, Rollé A, Souche FR, et al. How can I manage anaesthesia in obese patients?. Anaesth Crit Care Pain Med, 2020, 39(2): 229-238.
- 93. Hepner DL, Castells MC. Anaphylaxis during the perioperative period. Anesth Analg, 2003, 97(5): 1381-1395.
- 94. Lin CS, Chang CC, Yeh CC, et al. Postoperative adverse outcomes in patients with asthma: a nationwide population-based cohort study. Medicine (Baltim), 2016, 95(3): e2548.
- 95. Bayable SD, Melesse DY, Lema GF, et al. Perioperative management of patients with asthma during elective surgery: a systematic review. Ann Med Surg (Lond), 2021, 70: 102874.
- 96. Laher AE, Buchanan SK. Mechanically ventilating the severe asthmatic. J Intensive Care Med, 2018, 33(9): 491-501.
- 97. Chang S, Shi J, Fu C, et al. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1023-1029.
- 98. 吴江东, 杜学柯, 陈丽妮, 等. 不同机械通气模式对合并轻中度慢性阻塞性肺疾病老年患者腹腔镜下胆囊切除术后肺氧合功能的影响. 广西医学, 2022, 44: 717-723.
- 99. Park S, Oh EJ, Han S, et al. Intraoperative anesthetic management of patients with chronic obstructive pulmonary disease to decrease the risk of postoperative pulmonary complications after abdominal surgery. J Clin Med, 2020, 9(1): 150.
- 100. Mosier JM, Hypes CD. Mechanical ventilation strategies for the patient with severe obstructive lung disease. Emerg Med Clin North Am, 2019, 37(3): 445-458.
- 101. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care, 2019, 9(1): 69.
- 102. 熊伟, 陈萍, 高进, 等. 肺保护性通气在中老年脊柱俯卧位手术中的应用: 随机对照试验. 南方医科大学学报, 2016, 36(2): 215-219.
- 103. Wang J, Zhu L, Li Y, et al. The potential role of lung-protective ventilation in preventing postoperative delirium in elderly patients undergoing prone spinal surgery: a preliminary study. Med Sci Monit, 2020, 26: e926526.
- 104. Tao Y, Ma G, Sun T, et al. Effect of target-controlled pressure-controlled ventilation on percutaneous nephrolithotripsy patients under general anesthesia: a retrospective study. Transl Androl Urol, 2023, 12(5): 727-735.
- 105. Han J, Hu Y, Liu S, et al. Volume-controlled ventilation versus pressure-controlled ventilation during spine surgery in the prone position: a meta-analysis. Ann Med Surg (Lond), 2022, 78: 103878.
- 106. Grieco DL, Russo A, Anzellotti GM, et al. Lung-protective ventilation during Trendelenburg pneumoperitoneum surgery: a randomized clinical trial. J Clin Anesth, 2023, 85: 111037.
- 107. De Meyer GRA, Morrison SG, Saldien V, et al. Minimizing lung injury during laparoscopy in head-down tilt: a physiological cohort study. Anesth Analg, 2023, 137(4): 841-849.