- Department of Plastic Surgery, Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Beijing 100144, P.R.China. Corresponding author: FAN Jincai, E-mail: fanjincaimd@hotmail.com;
Objective To find new ways for wound healing and tissue expansion by reviewing of progress in recent years in functional molecules which are used for signaling channels of mechanical stress perception and mechanotransduction of keratinocyte. Methods The domestic and international articles were reviewed to summarize the functional molecules and signaling channels of mechanical stress perception and mechanotransduction of keratinocytes. Results The mechanism of mechanical stress perception includes mechano-sensitive channels, growth factor receptor-mediated mechanical stress perception, and mechanical stress perception by protein deformation. The mechanism of mechanotransduction includes cell adhesion-mediated signaling, mitogen-activated protein kinase signaling, the cytoskeleton and extracellular matrix, and so on. Conclusion Keratinocytes can response to the mechanical stress and transfer the effective information to undergo shaping, migration, proliferation, differentiation, and other biological behavior in order to adjust itself to adapt to the new environment.
Citation: FU Siqi,FAN Jincai. Ninth. RESEARCH PROGRESS OF SIGNALING CHANNELS OF MECHANOTRANSDUCTION ON KERATINOCYTES. Chinese Journal of Reparative and Reconstructive Surgery, 2013, 27(4): 500-506. doi: 10.7507/1002-1892.20130113 Copy
1. | Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol, 1995, 269(3 Pt 1): E438-442. |
2. | Orr AW, Helmke BP, Blackman BR, et al. Mechanisms of mechanotransduction. Dev Cell, 2006, 10(1): 11-20. |
3. | Matsubayashi Y, Ebisuya M, Honjoh S, et al. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr Biol, 2004, 14(8): 731-735. |
4. | Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci, 2004, 117(Pt 12): 2449-2460. |
5. | Yano S, Komine M, Fujimoto M, et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp Dermatol, 2006, 15(5): 356-361. |
6. | Takei T, Han O, Ikeda M, et al. Cyclic strain stimulates isoform-specific PKC activation and translocation in cultured human keratinocytes. J Cell Biochem, 1997, 67(3): 327-337. |
7. | Moqrich A, Hwang SW, Earley TJ, et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science, 2005, 307(5714): 1468-1472. |
8. | O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch, 2005, 451(1): 193-203. |
9. | Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J, 2006, 397(1): 1-14. |
10. | Jiang JX, Siller-Jackson AJ, Burra S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front Biosci, 2007, 12: 1450-1462. |
11. | Hennings H, Michael D, Cheng C, et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell, 1980, 19(1): 245-254. |
12. | Wilson E, Mai Q, Sudhir K, et al. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol, 1993, 123(3): 741-747. |
13. | Zhang B, Peng F, Wu D, et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal, 2007, 19(8): 1690-1700. |
14. | Knies Y, Bernd A, Kaufmann R, et al. Mechanical stretch induces clustering of beta1-integrins and facilitates adhesion. Exp Dermatol, 2006, 15(5): 347-355. |
15. | Vogel V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct, 2006, 35: 459-488. |
16. | Kung C. A possible unifying principle for mechanosensation. Nature, 2005, 436(7051): 647-654. |
17. | Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 2006, 7(4): 265-275. |
18. | Katz BZ, Zamir E, Bershadsky A, et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell, 2000, 11(3): 1047-1060. |
19. | Tamada M, Sheetz MP, Sawada Y. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell, 2004, 7(5): 709-718. |
20. | Sawada Y, Tamada M, Dubin-Thaler BJ, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell, 2006, 127(5): 1015-1026. |
21. | Sawada Y, Nakamura K, Doi K, et al. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. J Cell Sci, 2001, 114(Pt 6): 1221-1227. |
22. | Lee G, Abdi K, Jiang Y, et al. Nanospring behaviour of ankyrin repeats. Nature, 2006, 440(7081): 246-249. |
23. | Ortiz V, Nielsen SO, Klein ML, et al. Unfolding a linker between helical repeats. J Mol Biol, 2005, 349(3): 638-647. |
24. | Craig D, Krammer A, Schulten K, et al. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci U S A, 2001, 98(10): 5590-5595. |
25. | Gao M, Craig D, Vogel V, et al. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J Mol Biol, 2002, 323(5): 939-950. |
26. | Geiger B, Bershadsky A. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell, 2002, 110(2): 139-142. |
27. | Zhong C, Chrzanowska-Wodnicka M, Brown J, et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol, 1998, 141(2): 539-551. |
28. | Rubin CT, Lanyon LE. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol, 1984, 107(2): 321-327. |
29. | Shirinsky VP, Antonov AS, Birukov KG, et al. Mechano-chemical control of human endothelium orientation and size. J Cell Biol, 1989, 109(1): 331-339. |
30. | Takemasa T, Yamaguchi T, Yamamoto Y, et al. Oblique alignment of stress fibers in cells reduces the mechanical stress in cyclically deforming fields. Eur J Cell Biol, 1998, 77(2): 91-99. |
31. | Hofmann M, Zaper J, Bernd A, et al. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C. Biochem Biophys Res Commun, 2004, 316(3): 673-679. |
32. | Görmar FE, Bernd A, Bereiter-Hahn J, et al. A new model of epidermal differentiation: induction by mechanical stimulation. Arch Dermatol Res, 1990, 282(1): 22-32. |
33. | Swensson O, Langbein L, McMillan JR, et al. Specialized keratin expression pattern in human ridged skin as an adaptation to high physical stress. Br J Dermatol, 1998, 139(5): 767-775. |
34. | Felsenfeld DP, Schwartzberg PL, Venegas A, et al. Selective regulation of integrin—cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol, 1999, 1(4): 200-206. |
35. | Wang JH, Thampatty BP, Lin JS, et al. Mechanoregulation of gene expression in fibroblasts. Gene, 2007, 391(1-2): 1-15. |
36. | Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science, 2001, 294(5547): 1708-1712. |
37. | Reichelt J. Mechanotransduction of keratinocytes in culture and in the epidermis. Eur J Cell Biol, 2007, 86(11-12): 807-816. |
38. | Katsumi A, Orr AW, Tzima E, et al. Integrins in mechanotransduction. J Biol Chem, 2004, 279(13): 12001-12004. |
39. | Turchi L, Chassot AA, Bourget I, et al. Cross-talk between RhoGTPases and stress activated kinases for matrix metalloproteinase-9 induction in response to keratinocytes injury. J Invest Dermatol, 2003, 121(6): 1291-1300. |
40. | Burridge K, Fath K. Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. Bioessays, 1989, 10(4): 104-108. |
41. | Okuda M, Takahashi M, Suero J, et al. Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation. J Biol Chem, 1999, 274(38): 26803-26809. |
42. | Roovers K, Assoian RK. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases. Mol Cell Biol, 2003, 23(12): 4283-4294. |
43. | Jalali S, del Pozo MA, Chen K, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci U S A, 2001, 98(3): 1042-1046. |
44. | Katsumi A, Naoe T, Matsushita T, et al. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem, 2005, 280(17): 16546-16549. |
45. | Shemesh T, Geiger B, Bershadsky AD, et al. Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci U S A, 2005, 102(35): 12383-12388. |
46. | Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 2005, 437(7057): 426-431. |
47. | Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol, 2003, 19: 677-695. |
48. | Takei T, Rivas-Gotz C, Delling CA, et al. Effect of strain on human keratinocytes in vitro. J Cell Physiol, 1997, 173(1): 64-72. |
49. | Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol, 2004, 122(3): 783-790. |
50. | Takei T, Kito H, Du W, et al. Induction of interleukin (IL)-1 alpha and beta gene expression in human keratinocytes exposed to repetitive strain: their role in strain-induced keratinocyte proliferation and morphological change. J Cell Biochem, 1998, 69(2): 95-103. |
51. | Nguyen HT, Adam RM, Bride SH, et al. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol, 2000, 279(4): C1155-1167. |
52. | Kippenberger S, Loitsch S, Guschel M, et al. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J Biol Chem, 2005, 280(4): 3060-3067. |
53. | Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol, 2004, 6(6): 499-506. |
54. | Cabodi S, Moro L, Bergatto E, et al. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans, 2004, 32(Pt3): 438-442. |
55. | Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature, 1996, 379(6565): 557-560. |
56. | Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 1996, 274(5290): 1194-1197. |
57. | Moro L, Venturino M, Bozzo C, et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J, 1998, 17(22): 6622-6632. |
58. | Stenson WF. Prostaglandins and epithelial response to injury. Curr Opin Gastroenterol, 2007, 23(2): 107-110. |
59. | Lee RT, Briggs WH, Cheng GC, et al. Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. J Immunol, 1997, 159(10): 5084-5088. |
60. | Morrison DK, Kaplan DR, Escobedo JA, et al. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell, 1989, 58(4): 649-657. |
61. | Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci, 1993, 104(Pt3): 613-627. |
62. | Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci, 2003, 116(Pt 8): 1397-1408. |
63. | Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci, 2003, 116(Pt 7): 1157-1173. |
64. | Ingber DE. The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst, 2004, 1(1): 53-68. |
65. | Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J, 2006, 20(7): 811-827. |
66. | Ingber DE. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol, 2006, 50(2-3): 255-266. |
67. | Giannone G, Sheetz MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol, 2006, 16(4): 213-223. |
68. | Butler B, Gao C, Mersich AT, et al. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr Biol, 2006, 16(3): 242-251. |
69. | Schober M, Raghavan S, Nikolova M, et al. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol, 2007, 176(5): 667-680. |
70. | Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest, 2004, 113(3): 370-378. |
71. | Herrmann H, Bär H, Kreplak L, et al. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol, 2007, 8(7): 562-573. |
72. | Reichelt J, Büssow H, Grund C, et al. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell, 2001, 12(6): 1557-1568. |
73. | Wong P, Coulombe PA. Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol, 2003, 163(2): 327-337. |
74. | Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. J Cell Sci, 2002, 115(Pt 13): 2639-2650. |
75. | Reichelt J, Furstenberger G, Magin TM. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J Invest Dermatol, 2004, 123(5): 973-981. |
76. | Smith PG, Garcia R, Kogerman L. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells. Exp Cell Res, 1997, 232(1): 127-136. |
77. | Russell D, Andrews PD, James J, et al. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci, 2004, 117(Pt 22): 5233-5243. |
78. | Vasioukhin V, Bowers E, Bauer C, et al. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol, 2001, 3(12): 1076-1085. |
79. | Windoffer R, Kölsch A, Wöl S, et al. Focal adhesions are hotspots for keratin filament precursor formation. J Cell Biol, 2006, 173(3): 341-348. |
80. | Arany PR, Flanders KC, Kobayashi T, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. Proc Natl Acad Sci U S A, 2006, 103(24): 9250-9255. |
81. | Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 2006, 22(3): 287-309. |
82. | Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science, 2005, 310(5751): 1139-1143. |
83. | Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8(3): 241-254. |
84. | Engler AJ, Griffin MA, Sen S, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol, 2004, 166(6): 877-887. |
85. | Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4): 677-689. |
86. | Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest, 1995, 96(5): 2364-2372. |
87. | Nicolas A, Safran SA. Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J, 2006, 91(1): 61-73. |
88. | Yuan Y, Verma R. Measuring microelastic properties of stratum corneum. Colloids SurfB Biointerfaces, 2006, 48(1): 6-12. |
89. | Takei T, Mills I, Arai K, et al. Molecular basis for tissue expansion: clinical implications for the surgeon. Plast Reconstr Surg, 1998, 102(1): 247-258. |
- 1. Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol, 1995, 269(3 Pt 1): E438-442.
- 2. Orr AW, Helmke BP, Blackman BR, et al. Mechanisms of mechanotransduction. Dev Cell, 2006, 10(1): 11-20.
- 3. Matsubayashi Y, Ebisuya M, Honjoh S, et al. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr Biol, 2004, 14(8): 731-735.
- 4. Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci, 2004, 117(Pt 12): 2449-2460.
- 5. Yano S, Komine M, Fujimoto M, et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp Dermatol, 2006, 15(5): 356-361.
- 6. Takei T, Han O, Ikeda M, et al. Cyclic strain stimulates isoform-specific PKC activation and translocation in cultured human keratinocytes. J Cell Biochem, 1997, 67(3): 327-337.
- 7. Moqrich A, Hwang SW, Earley TJ, et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science, 2005, 307(5714): 1468-1472.
- 8. O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch, 2005, 451(1): 193-203.
- 9. Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J, 2006, 397(1): 1-14.
- 10. Jiang JX, Siller-Jackson AJ, Burra S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front Biosci, 2007, 12: 1450-1462.
- 11. Hennings H, Michael D, Cheng C, et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell, 1980, 19(1): 245-254.
- 12. Wilson E, Mai Q, Sudhir K, et al. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol, 1993, 123(3): 741-747.
- 13. Zhang B, Peng F, Wu D, et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal, 2007, 19(8): 1690-1700.
- 14. Knies Y, Bernd A, Kaufmann R, et al. Mechanical stretch induces clustering of beta1-integrins and facilitates adhesion. Exp Dermatol, 2006, 15(5): 347-355.
- 15. Vogel V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct, 2006, 35: 459-488.
- 16. Kung C. A possible unifying principle for mechanosensation. Nature, 2005, 436(7051): 647-654.
- 17. Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 2006, 7(4): 265-275.
- 18. Katz BZ, Zamir E, Bershadsky A, et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell, 2000, 11(3): 1047-1060.
- 19. Tamada M, Sheetz MP, Sawada Y. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell, 2004, 7(5): 709-718.
- 20. Sawada Y, Tamada M, Dubin-Thaler BJ, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell, 2006, 127(5): 1015-1026.
- 21. Sawada Y, Nakamura K, Doi K, et al. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. J Cell Sci, 2001, 114(Pt 6): 1221-1227.
- 22. Lee G, Abdi K, Jiang Y, et al. Nanospring behaviour of ankyrin repeats. Nature, 2006, 440(7081): 246-249.
- 23. Ortiz V, Nielsen SO, Klein ML, et al. Unfolding a linker between helical repeats. J Mol Biol, 2005, 349(3): 638-647.
- 24. Craig D, Krammer A, Schulten K, et al. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci U S A, 2001, 98(10): 5590-5595.
- 25. Gao M, Craig D, Vogel V, et al. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J Mol Biol, 2002, 323(5): 939-950.
- 26. Geiger B, Bershadsky A. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell, 2002, 110(2): 139-142.
- 27. Zhong C, Chrzanowska-Wodnicka M, Brown J, et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol, 1998, 141(2): 539-551.
- 28. Rubin CT, Lanyon LE. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol, 1984, 107(2): 321-327.
- 29. Shirinsky VP, Antonov AS, Birukov KG, et al. Mechano-chemical control of human endothelium orientation and size. J Cell Biol, 1989, 109(1): 331-339.
- 30. Takemasa T, Yamaguchi T, Yamamoto Y, et al. Oblique alignment of stress fibers in cells reduces the mechanical stress in cyclically deforming fields. Eur J Cell Biol, 1998, 77(2): 91-99.
- 31. Hofmann M, Zaper J, Bernd A, et al. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C. Biochem Biophys Res Commun, 2004, 316(3): 673-679.
- 32. Görmar FE, Bernd A, Bereiter-Hahn J, et al. A new model of epidermal differentiation: induction by mechanical stimulation. Arch Dermatol Res, 1990, 282(1): 22-32.
- 33. Swensson O, Langbein L, McMillan JR, et al. Specialized keratin expression pattern in human ridged skin as an adaptation to high physical stress. Br J Dermatol, 1998, 139(5): 767-775.
- 34. Felsenfeld DP, Schwartzberg PL, Venegas A, et al. Selective regulation of integrin—cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol, 1999, 1(4): 200-206.
- 35. Wang JH, Thampatty BP, Lin JS, et al. Mechanoregulation of gene expression in fibroblasts. Gene, 2007, 391(1-2): 1-15.
- 36. Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science, 2001, 294(5547): 1708-1712.
- 37. Reichelt J. Mechanotransduction of keratinocytes in culture and in the epidermis. Eur J Cell Biol, 2007, 86(11-12): 807-816.
- 38. Katsumi A, Orr AW, Tzima E, et al. Integrins in mechanotransduction. J Biol Chem, 2004, 279(13): 12001-12004.
- 39. Turchi L, Chassot AA, Bourget I, et al. Cross-talk between RhoGTPases and stress activated kinases for matrix metalloproteinase-9 induction in response to keratinocytes injury. J Invest Dermatol, 2003, 121(6): 1291-1300.
- 40. Burridge K, Fath K. Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. Bioessays, 1989, 10(4): 104-108.
- 41. Okuda M, Takahashi M, Suero J, et al. Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation. J Biol Chem, 1999, 274(38): 26803-26809.
- 42. Roovers K, Assoian RK. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases. Mol Cell Biol, 2003, 23(12): 4283-4294.
- 43. Jalali S, del Pozo MA, Chen K, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci U S A, 2001, 98(3): 1042-1046.
- 44. Katsumi A, Naoe T, Matsushita T, et al. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem, 2005, 280(17): 16546-16549.
- 45. Shemesh T, Geiger B, Bershadsky AD, et al. Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci U S A, 2005, 102(35): 12383-12388.
- 46. Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 2005, 437(7057): 426-431.
- 47. Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol, 2003, 19: 677-695.
- 48. Takei T, Rivas-Gotz C, Delling CA, et al. Effect of strain on human keratinocytes in vitro. J Cell Physiol, 1997, 173(1): 64-72.
- 49. Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol, 2004, 122(3): 783-790.
- 50. Takei T, Kito H, Du W, et al. Induction of interleukin (IL)-1 alpha and beta gene expression in human keratinocytes exposed to repetitive strain: their role in strain-induced keratinocyte proliferation and morphological change. J Cell Biochem, 1998, 69(2): 95-103.
- 51. Nguyen HT, Adam RM, Bride SH, et al. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol, 2000, 279(4): C1155-1167.
- 52. Kippenberger S, Loitsch S, Guschel M, et al. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J Biol Chem, 2005, 280(4): 3060-3067.
- 53. Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol, 2004, 6(6): 499-506.
- 54. Cabodi S, Moro L, Bergatto E, et al. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans, 2004, 32(Pt3): 438-442.
- 55. Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature, 1996, 379(6565): 557-560.
- 56. Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 1996, 274(5290): 1194-1197.
- 57. Moro L, Venturino M, Bozzo C, et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J, 1998, 17(22): 6622-6632.
- 58. Stenson WF. Prostaglandins and epithelial response to injury. Curr Opin Gastroenterol, 2007, 23(2): 107-110.
- 59. Lee RT, Briggs WH, Cheng GC, et al. Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. J Immunol, 1997, 159(10): 5084-5088.
- 60. Morrison DK, Kaplan DR, Escobedo JA, et al. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell, 1989, 58(4): 649-657.
- 61. Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci, 1993, 104(Pt3): 613-627.
- 62. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci, 2003, 116(Pt 8): 1397-1408.
- 63. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci, 2003, 116(Pt 7): 1157-1173.
- 64. Ingber DE. The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst, 2004, 1(1): 53-68.
- 65. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J, 2006, 20(7): 811-827.
- 66. Ingber DE. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol, 2006, 50(2-3): 255-266.
- 67. Giannone G, Sheetz MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol, 2006, 16(4): 213-223.
- 68. Butler B, Gao C, Mersich AT, et al. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr Biol, 2006, 16(3): 242-251.
- 69. Schober M, Raghavan S, Nikolova M, et al. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol, 2007, 176(5): 667-680.
- 70. Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest, 2004, 113(3): 370-378.
- 71. Herrmann H, Bär H, Kreplak L, et al. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol, 2007, 8(7): 562-573.
- 72. Reichelt J, Büssow H, Grund C, et al. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell, 2001, 12(6): 1557-1568.
- 73. Wong P, Coulombe PA. Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol, 2003, 163(2): 327-337.
- 74. Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. J Cell Sci, 2002, 115(Pt 13): 2639-2650.
- 75. Reichelt J, Furstenberger G, Magin TM. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J Invest Dermatol, 2004, 123(5): 973-981.
- 76. Smith PG, Garcia R, Kogerman L. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells. Exp Cell Res, 1997, 232(1): 127-136.
- 77. Russell D, Andrews PD, James J, et al. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci, 2004, 117(Pt 22): 5233-5243.
- 78. Vasioukhin V, Bowers E, Bauer C, et al. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol, 2001, 3(12): 1076-1085.
- 79. Windoffer R, Kölsch A, Wöl S, et al. Focal adhesions are hotspots for keratin filament precursor formation. J Cell Biol, 2006, 173(3): 341-348.
- 80. Arany PR, Flanders KC, Kobayashi T, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. Proc Natl Acad Sci U S A, 2006, 103(24): 9250-9255.
- 81. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 2006, 22(3): 287-309.
- 82. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science, 2005, 310(5751): 1139-1143.
- 83. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8(3): 241-254.
- 84. Engler AJ, Griffin MA, Sen S, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol, 2004, 166(6): 877-887.
- 85. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4): 677-689.
- 86. Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest, 1995, 96(5): 2364-2372.
- 87. Nicolas A, Safran SA. Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J, 2006, 91(1): 61-73.
- 88. Yuan Y, Verma R. Measuring microelastic properties of stratum corneum. Colloids SurfB Biointerfaces, 2006, 48(1): 6-12.
- 89. Takei T, Mills I, Arai K, et al. Molecular basis for tissue expansion: clinical implications for the surgeon. Plast Reconstr Surg, 1998, 102(1): 247-258.
-
Previous Article
PROGRESS IN TREATMENT OF TERRIBLE TRIAD OF ELBOW -
Next Article
帽状原位缝合结合筋膜瓣移位治疗无再植条件的指尖离断伤