1. |
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
|
2. |
van der Veen VC, Vlig M, van Milligen FJ, et al. Stem cells in burn eschar. Cell Transplant, 2012, 21(5): 933-942.
|
3. |
Sasaki M, Abe R, Fujita Y, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol, 2008, 180(4): 2581-2587.
|
4. |
Wu Y, Chen L, Scott PG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 2007, 25(10): 2648-2659.
|
5. |
Han Y, Chai J, Sun T, et al. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Biophys Res Commun, 2011, 413(4): 561-565.
|
6. |
Luo G, Cheng W, He W, et al. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Rep Reg, 2010, 18(5): 506-513.
|
7. |
Cao Y, Sun Z, Liao LM, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun, 2005, 332(2): 370-379.
|
8. |
Zou Z, Zhang Y, Hao L, et al. More insight into mesenchymal stem cells and their effects inside the body. Expert Opin Biol Ther, 2010, 10(2): 215-230.
|
9. |
Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses, 2009, 72(6): 679-682.
|
10. |
Nie C, Yang D, Xu J, et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant, 2011, 20(2): 205-216.
|
11. |
Altman AM, Matthias N, Yan Y, et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials, 2008, 29(10): 1431-1442.
|
12. |
Altman AM, Yan Y, Matthias N, et al. IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells, 2009, 27(1): 250-258.
|
13. |
Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes oftissue repair—current views. Stem Cells, 2007, 25(11): 2896-2902.
|
14. |
Pallua N, Pulsfort AK, Suschek C, et al. Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg, 2009, 123(3): 826-833.
|
15. |
Ermolov AS, Smirnov SV, Khvatov VB, et al. The use of bioactive wound dressing, stimulating epithelial regeneration of Ⅲa-degree burn wounds. Bull Exp Biol Med, 2008, 146(1): 153-157.
|
16. |
Ching YH, Sutton TL, Pierpont YN, et al. The use of growth factors and other humoral agents to accelerate and enhance burn wound healing. Eplasty, 2011, 11(7): e41.
|
17. |
Weber CE, Li NY, Wai PY, et al. Epithelial-mesenchymal transition, TGF-β, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res, 2012, 33(3): 311-318.
|
18. |
Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol, 2010, 2010: 795385.
|
19. |
Carlos C, Gabriela C, Chiara P, et al. The role of biologically active peptides in tissue repair using umbilical cord mesenchymal stem cells. Ann N Y Acad Sci, 2012, 1270: 93-97.
|
20. |
Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol, 2010, 41(4): 771-783.
|
21. |
Maria PA, Desirae LD, Meredith W, et al. A physiological role for connective tissue growth factor in early wound healing. Lab Invest, 2013, 93(1): 81-95.
|
22. |
Lu F, Li J, Gao J, et al. Improvement of the survival of human autologous fat transplantation by using VEGF-transduced adipose-derived stem cells. Plast Reconstr Surg, 2009, 124(5): 1437-1446.
|
23. |
Song SH, Lee MO, Lee JS, et al. Genetic modification of human adipose-derived stem cells for promoting wound healing. J Dermatol Sci, 2012, 66(2): 98-107.
|
24. |
Wannemuehler TJ, Manukyan MC, Brewster BD, et al. Advances in mesenchymal stem cell research in sepsis. J Surg Res, 2012, 173(1): 113-126.
|
25. |
Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappa B signaling in resident macrophages. Blood, 2011, 118(2): 330-338.
|
26. |
Crisostomo PR, Markel TA, Wang Y, et al. Surgically relevant aspects of stem cell paracrine effects. Surgery, 2008, 143(5): 577-581.
|
27. |
Weil BR, Manukyan MC, Herrmann JL, et al. Mesenchymal stem cells attenuate myocardial functional depression and reduce systemic and myocardial inflammation during endotoxe-mia. Surgery, 2010, 148(2): 444-452.
|
28. |
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005, 105(4): 1815-1822.
|
29. |
Lee SH, Lee JH, Cho KH. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol, 2011, 23(2): 150-155.
|
30. |
Jackson WM, Nesti LJ, Tuan RS. Mesechycal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther, 2012, 3(3): 20.
|
31. |
Griffin MD, Ritter T, Mahon BP, et al. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther, 2010, 21(12): 1641-1655.
|
32. |
Hoogduijn MJ, Roemeling-van Rhijn M, Korevaar SS, et al. Immunological aspects of allogeneic and autologous mesenchycal stem cell therapies. Hum Gene Ther, 2011, 22(12): 1587-1591.
|
33. |
Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res, 2010, 20(5): 510-518.
|
34. |
Pradier A, Passweg J, Villard J, et al. Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant, 2011, 20(5): 681-691.
|
35. |
English K, Ryan JM, Tobin L, et al. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in humanmesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol, 2009, 156(1): 149-160.
|
36. |
Maccario R, Podesta M, Moretta A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4(+), T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005, 90(4): 516-525.
|
37. |
Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002, 30 (1): 42-48.
|
38. |
Xu G, Zhang L, Ren G, et al. Immunosuppressive properties o f cloned bone marrow mesenchymal stem cells. Cell Res, 2007, 17(3): 240-248.
|
39. |
Iso Y, Spees JL, Serrano C, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun, 2007, 354(3): 700-706.
|