1. |
Butler DL, Juncosa-melvin N, Boivin GP, et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res, 2008, 26(1): 1-9.
|
2. |
Koob TJ, Summers AP. Tendon—bridging the gap. Comp Biochem Physiol A Mol Integr Physiol, 2002, 133(4): 905-909.
|
3. |
夏长所, 杨选影, 韩迎秋, 等. TGF-β1中和抗体对TGF-β诱导的肌腱胶原产生和术后粘连形成的影响. 中国修复重建外科杂志, 2009, 23(6): 698-703.
|
4. |
姜大朋, 李昭铸, 张玉波, 等. TGF-β1对腱鞘成纤维细胞α-SMA及细胞外基质合成的影响. 中国矫形外科杂志, 2010, 18(9): 759-761.
|
5. |
Derby BM, Reichensperger J, Chambers C, et al. Early growth response factor-1: expression in a rabbit flexor tendon scar model. Arch Facial Plast Surg, 2012, 129(3): 435e-442e.
|
6. |
Taylor SH, Al-youha S, Van Agtmael T, et al. Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS One, 2011, 6(1): e16337.
|
7. |
Katzel EB, Wolenski M, Loiselle AE, et al. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res, 2011, 29(5): 684-693.
|
8. |
Loiselle AE, Frisch BJ, Wolenski M, et al. Bone marrow-derived matrix metalloproteinase-9 is associated with fibrous adhesion formation after murine flexor tendon injury. PLoS One, 2012, 7(7): e40602.
|
9. |
Killian ML, Cavinatto L, Galatz LM, et al. The role of mechanobiology in tendon healing. J Shoulder Elbow Surg, 2012, 21(2): 228-237.
|
10. |
Xia C, Yang X, Wang YZ, et al. Tendon healing in vivo and in vitro: neutralizing antibody to TGF-β improves range of motion after flexor tendon repair. Orthopedics, 2010, 33(11): 809.
|
11. |
Tan V, Nourbakhsh A, Capo J, et al. Effects of nonsteroidal anti-inflammatory drugs on flexor tendon adhesion. J Hand Surg (Am), 2010, 35(6): 941-947.
|
12. |
Xia C, Zuo J, Wang C, et al. Tendon healing in vivo: effect of mannose-6-phosphate on flexor tendon adhesion formation. Orthopedics, 2012, 35(7): e1056-e1060.
|
13. |
Wiig M, Olmarker K, Håkansson J, et al. A lactoferrin-derived peptide (PXL01) for the reduction of adhesion formation in flexor tendon surgery: an experimental study in rabbits. J Hand Surg (Eur Vol), 2011, 36(8): 656-662.
|
14. |
Nilsson E, Björn C, Sjöstrand V, et al. A novel polypeptide derived from human lactoferrin in sodium hyaluronate prevents postsurgical adhesion formation in the rat. Ann Surg, 2009, 250(6): 1021-1028.
|
15. |
Kocaoglu B, Agir I, Nalbantoglu U, et al. Effect of mitomycin-C on post-operative adhesions in tendon surgery: an experimental study in rats. J Bone Joint Surg (Br), 2010, 92(6): 889-893.
|
16. |
McGonagle L, Jones MD, Dowson D, et al. The bio-tribological properties of anti-adhesive agents commonly used during tendon repair. J Orthop Res, 2012, 30(5): 775-780.
|
17. |
Ferguson RE, Rinker B. The use of a hydrogel sealant on flexor tendon repairs to prevent adhesion formation. Ann Plast Surg, 2006, 56(1): 54-58.
|
18. |
Ishiyama N, Moro T, Ishihara K, et al. The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions. Biomaterials, 2010, 31(14): 4009-4016.
|
19. |
Ishiyama N, Moro T, Ohe T, et al. Reduction of peritendinous adhesions by hydrogel containing biocompatible phospholipid polymer MPC for tendon repair. J Bone Joint Surg (Am), 2011, 93(2): 142-149.
|
20. |
Liu S, Hu C, Li F, et al. Prevention of peritendinous adhesions with electrospun ibuprofen-loaded poly (L-lactic acid)-polyethylene glycol fibrous fibrous membranes. Tissue Eng Part A, 2012, 19(3-4): 529-537.
|
21. |
Bhavsar D, Shettko D, Tenenhaus M. Encircling the tendon repair site with collagen-GAG reduces the formation of postoperative tendon adhesions in a chicken flexor tendon model. J Invest Surg, 2010, 159(2): 765-771.
|
22. |
Ni T, Senthil-kumar P, Dubbin K, et al. A photoactivated nanofiber graft material for augmented Achilles tendon repair. Lasers Surg Med, 2012, 44(8): 645-652.
|
23. |
Karaaltin MV, Ozalp B, Dadaci M, et al. The effects of 5-fluorouracil on flexor tendon healing by using a biodegradable gelatin, slow releasing system: experimental study in a hen model. J Hand Surg (Eur Vol), 2012. [Epub ahead of print].
|
24. |
Cao Y, Tang JB. Resistance to motion of flexor tendons and digital edema: An in vivo study in a chicken model. J Hand Surg (Am), 2006, 31(10): 1645-1651.
|
25. |
Tang JB. Clinical outcomes associated with flexor tendon repair. Hand Clin, 2005, 21(2): 199-210.
|
26. |
Wang JH, Guo Q, Li B. Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J Hand Ther, 2012, 25(2): 133-140.
|
27. |
Doi K, Hattori Y, Yamazaki H, et al. Importance of early passive mobilization following double free gracilis muscle transfer. Plast Reconstr Surg, 2008, 121(6): 2037-2045.
|
28. |
Düzgün I, Baltac G, Atay OA. Comparison of slow and accelerated rehabilitation protocol after arthroscopic rotator cuff repair: pain and functional activity. Acta Orthop Traumatol Turc, 2011, 45(1): 23-33.
|
29. |
Atik B, Tan O, Dogan A, et al. A new method in tendon repair: angular technique of interlocking (ATIK). Ann Plast Surg, 2008, 60(3): 251-253.
|
30. |
Yao J, Woon CY, Behn A, et al. The effect of suture coated with mesenchymal stem cells and bioactive substrate on tendon repair strength in a rat model. J Hand Surg (Am), 2012, 37(8): 1639-1645.
|
31. |
Nishida J, Araki S, Akasaka T, et al. Effect of hyaluronic acid on the excursion resistance of tendon grafts. A biomechanical study in a canine model in vitro. J Bone Joint Surg (Br), 2004, 86(6): 918-924.
|
32. |
Menderes A, Mola F, Tayfur V, et al. Prevention of peritendinous adhesions following flexor tendon injury with seprafilm. Ann Plast Surg, 2004, 53(6): 560-564.
|
33. |
Liu Y, Skardal A, Shu XZ, et al. Prevention of peritendinous adhesions using a hyaluronan-derived hydrogel film following partialthickness flexor tendon injury. J Orthop Res, 2008, 26(4): 562-569.
|
34. |
Ozgenel GY, Etöz A. Effects of repetitive injections of hyaluronic acid on peritendinous adhesions after flexor tendon repair: a preliminary randomized, placebo-controlled clinical trial. Ulus Travma Acil Cerrahi Derg, 2012, 18(1): 11-17.
|
35. |
de Wit T, de Putter D, Tra WM, et al. Auto-crosslinked hyaluronic acid gel accelerates healing of rabbit flexor tendons in vivo. J Orthop Res, 2009, 27(3): 408-415.
|
36. |
Oryan A, Moshiri A. Recombinant fibroblast growth protein enhances healing ability of experimentally induced tendon injury in vivo. J Tissue Eng Regen Med, 2012. [Epub ahead of print].
|
37. |
Hamada Y, Katoh S, Hibino N, et al. Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing. J Hand Surg (Am), 2006, 31(4): 530-540.
|
38. |
盛加根, 曾炳芳, 姜佩珠, 等. 局部单次使用bFGF及5-氟尿嘧啶促进屈肌腱愈合和防止粘连形成的实验研究. 中国修复重建外科杂志, 2011, 25(6): 711-717..
|
39. |
Liu S, Zhao J, Ruan H, et al. Biomimetic sheath membrane via electrospinning for antiadhesion of repaired tendon. Biomacromolecules, 2012, 13(11): 3611-3619.
|
40. |
Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg, 2012, 21(2): 278-294.
|
41. |
Chen G, Zhang S, Zhang Z. Over-expression of has2 in synovium-derived mesenchymal stem cells May prevent adhesions following surgery of the digital flexor tendons. Med Hypotheses, 2011, 76(3): 314-316.
|
42. |
Chen G, Zhang SX, Tao ZF, et al. Overexpression of synoviolin facilitates the formation of a functional synovial biomembrane. J Biomed Mater Res A, 2012, 100(7): 1761-1769.
|
43. |
Tang JB, Cao Y, Zhu B, et al. Adeno-associated virus-2-mediated bFGF gene transfer to digital flexor tendons significantly increases healing strength. an in vivo study. J Bone Joint Surg (Am), 2008, 90(5): 1078-1089.
|
44. |
Ozturk AM, Yam A, Chin SI, et al. Synovial cell culture and tissue engineering of a tendon synovial cell biomembrane. J Biomed Mater Res A, 2008, 84(4): 1120-1126.
|
45. |
Dy CJ, Hernandez-Soria A, Ma Y, et al. Complications after flexor tendon repair: a systematic review and meta-analysis. J Hand Surg (Am), 2012, 37(3): 543-551. e1.
|