1. |
Matsumoto T, Holmes RH, Burdick CO, et al. Replacement of large veins with free inverted segments of small bowel: autografts of submucosal membrane in dogs and clinical use. Ann Surg, 1966, 164(5): 845-848.
|
2. |
Brown BN, Barnes CA, Kasick RT, et al. Surface characterization of extracellular matrix scaffolds. Biomaterials, 2010, 31(3): 428-437.
|
3. |
Ferrand BK, Kokini K, Badylak SF, et al. Directional porosity of porcine smallintestinal submucosa. J Biomed Mater Res, 1993, 27(10): 1235-1241.
|
4. |
Tottey S, Johnson SA, Crapo PM, et al. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials, 2011, 32(1): 128-136.
|
5. |
Cowles EA, Brailey LL, Gronowicz GA. Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J Biomed Mater Res, 2000, 52(4): 725-737.
|
6. |
Luo JC, Chen W, Chen XH, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials, 2011, 32(3): 706-713.
|
7. |
Azzarello J, Ihnat MA, Kropp BP, et al. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay. Biomed Mater, 2007, 2(2): 55-61.
|
8. |
Badylak SF, Coffey AC, Lantz GC, et al. Comparison of the resistance to infection of intestinal submucosa arterial autografts versus polytetrafluoroethylene arterial prostheses in a dog model. J Vasc Surg, 1994, 19(3): 465-472.
|
9. |
Sarikaya A, Record R, Wu CC, et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng, 2002, 8(1): 63-71.
|
10. |
Franklin ME Jr, Treviño JM, Portillo G, et al. The use of porcine small intestinal submucosa as a prosthetic material for laparoscopic hernia repair in infected and potentially contaminated fields: long-term follow-up. Surg Endosc, 2008, 22(9): 1941-1946.
|
11. |
Zhai Y, Ghobrial RM, Busuttil RW, et al. Th1 and Th2 cytokines in organ transplantation: paradigm lost? Crit Rev Immunol, 1999, 19(2): 155-172.
|
12. |
Sandrin MS, McKenzie IF. Gal alpha (1, 3) Gal, the major xenoantigen (s) recognised in pigs by human natural antibodies. Immunol Rev, 1994, 141: 169-190.
|
13. |
Daly KA, Stewart-Akers AM, Hara H, et al. Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A, 2009, 15(12): 3877-3888.
|
14. |
Ansaloni L, Cambrini P, Catena F, et al. Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg, 2007, 20(4): 237-241.
|
15. |
Record RD, Hillegonds D, Simmons C, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials, 2001, 22(19): 2653-2659.
|
16. |
Valentin JE, Stewart-Akers AM, Gilbert TW, et al. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A, 2009, 15(7): 1687-1694.
|
17. |
Ashley RA, Roth CC, Palmer BW, et al. Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. BJU Int, 2010, 105(10): 1462-1468.
|
18. |
Abraham GA, Murray J, Billiar K, et al. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res, 2000, 51(3): 442-452.
|
19. |
陈薇, 李次会, 武术, 等. 脱细胞处理对小肠黏膜下层细胞残留及生长因子含量影响的实验研究. 中国修复重建外科杂志, 2010, 24(1): 94-99.
|
20. |
Roeder R, Wolfe J, Lianakis N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small-diameter vascular grafts. J Biomed Mater Res, 1999, 47(1): 65-70.
|
21. |
Raghavan D, Kropp BP, Lin HK, et al. Physical characteristics of small intestinal submucosa scaffolds are location-dependent. J Biomed Mater Res A, 2005, 73(1): 90-96.
|
22. |
Hiles MC, Badylak SF, Lantz GC, et al. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J Biomed Mater Res, 1995, 29(7): 883-891.
|
23. |
Jernigan TW, Croce MA, Cagiannos C, et al. Small intestinal submucosa for vascular reconstruction in the presence of gastrointestinal contamination. Ann Surg, 2004, 239(5): 733-740.
|
24. |
Badylak S, Obermiller J, Geddes L, et al. Extracellular matrix for myocardial repair. Heart Surg Forum, 2003, 6(2): E20-26.
|
25. |
Okada M, Payne TR, Oshima H, et al. Differential efficacy of gels derived from small intestinal submucosa as an injectable biomaterial for myocardial infarct repair. Biomaterials, 2010, 31(30): 7678-7683.
|
26. |
Hiles M, Record Ritchie RD, Altizer AM. Are biologic grafts effective for hernia repair?: a systematic review of the literature. Surg Innov, 2009, 16(1): 26-37.
|
27. |
Oelschlager BK, Pellegrini CA, Hunter J, et al. Biologic prosthesis reduces recurrence after laparoscopic paraesophageal hernia repair a multicenter, prospective, randomized trial. Ann Surg, 2006, 244(4): 481-490.
|
28. |
Oelschlager BK, Pellegrini CA, Hunter JG, et al. Biologic prosthesis to prevent recurrence after laparoscopic paraesophageal hernia repair: long-term follow-up from a multicenter, prospective, randomized trial. J Am Coll Surg, 2011, 213(4): 461-468.
|
29. |
Smith MJ, Paran TS, Quinn F, et al. The SIS extracellular matrix scaffold-preliminary results of use in congenital diaphragmatic hernia (CDH) repair. Pediatr Surg Int, 2004, 20(11-12): 859-862.
|
30. |
Romao RL, Nasr A, Chiu PP, et al. What is the best prosthetic material for patch repair of congenital diaphragmatic hernia? Comparison and meta-analysis of porcine small intestinal submucosa and polytetrafluoroethylene. J Pediatr Surg, 2012, 47(8): 1496-1500.
|
31. |
Kropp BP. Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol, 1998, 16(4): 262-267.
|
32. |
Schaefer M, Kaiser A, Stehr M, et al. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol, 2013. [Epub ahead of print].
|
33. |
Boruch AV, Nieponice A, Qureshi IR, et al. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J Surg Res, 2010, 161(2): 217-225.
|
34. |
Salvatore S, Ciciliato S, Lampropoulou N, et al. Porcine small intestinal submucosa implant in pubovaginal sling procedure on 48 consecutive patients: long-term results. Eur J Obstet Gynecol Reprod Biol, 2011, 158(2): 350-353.
|
35. |
John TT, Aggarwal N, Singla AK, et al. Intense inflammatory reaction with porcine small intestine submucosa pubovaginal sling or tape for stress urinary incontinence. Urology, 2008, 72(5): 1036-1039.
|
36. |
王少云, 吴迪, 张丽, 等. 猪小肠粘膜下层治疗兔背部皮肤缺损的实验研究. 昆明医学院学报, 2011, 32(6): 12-16.
|
37. |
Lown I, Kurt T, Tran H, et al. Does bilayered extracellular matrix technology hasten wound healing in venous stasis ulcers? A retrospective study. Wounds, 2005, 17(2): 27-31.
|
38. |
Mostow EN, Haraway GD, Dalsing M, et al. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg, 2005, 41(5): 837-843.
|
39. |
Niezgoda JA, Van Gils CC, Frykberg RG, et al. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care, 2005, 18(5 Pt 1): 258-266.
|
40. |
Hoeppner J, Crnogorac V, Marjanovic G, et al. Small intestinal submucosa as a bioscaffold for tissue regeneration in defects of the colonic wall. J Gastrointest Surg, 2009, 13(1): 113-119.
|
41. |
Nishimura T, Ueno T, Nakatsu H, et al. In vivo motility evaluation of the grafted gastric wall with small intestinal submucosa. Tissue Eng Part A, 2010, 16(5): 1761-1768.
|
42. |
Badylak S, Meurling S, Chen M, et al. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg, 2000, 35(7): 1097-1103.
|
43. |
Cobb MA, Badylak SF, Janas W, et al. Histology after dural grafting with small intestinal submucosa. Surg Neurol, 1996, 46(4): 389-394.
|
44. |
Cobb MA, Badylak SF, Janas W, et al. Porcine small intestinal submucosa as a dural substitute. Surg Neurol, 1999, 51(1): 99-104.
|
45. |
Bejjani GK, Zabramski J, Durasis Study Group. Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and l iterature review. J Neurosurg, 2007, 106(6): 1028-1033.
|
46. |
Cintron JR, Abcarian H, Chaudhry V, et al. Treatment of fistula-in-ano using a porcine small intestinal submucosa anal fistula plug. Tech Coloproctol, 2013, 17(2): 187-191.
|
47. |
Seymour PE, Leventhal DD, Pribitkin EA. Lip augmentation with porcine small intestinal submucosa. Arch Facial Plast Surg, 2008, 10(1): 30-33.
|
48. |
Celik O, Esrefoglu M, Hascalik S, et al. Use of porcine small intestinal submucosa to reconstruct an ovarian defect. Int J Gynaecol Obstet, 2009, 106(3): 218-222.
|
49. |
Peng HF, Liu JY, Andreadis ST, et al. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng Part A, 2011, 17(7-8): 981-990.
|
50. |
Sharma AK, Bury MI, Marks AJ, et al. A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells, 2011, 29(2): 241-250.
|
51. |
Ma L, Yang YJ, Sikka SC, et al. Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction. Proc Natl Acad Sci U S A, 2012, 109(6): 2090-2095.
|
52. |
Liu S, Zhang H, Zhang X, et al. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Eng Part A, 2011, 17(5-6): 725-739.
|
53. |
Wei RQ, Tan B, Tan MY, et al. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med, 2009, 234(4): 453-461.
|
54. |
Du XF, Kwon SK, Song JJ, et al. Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits. Int J Pediatr Otorhinolaryngol, 2012, 76(3): 345-351.
|
55. |
Mondalek FG, Ashley RA, Roth CC, et al. Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronicacid-poly (lactide-coglycolide) nanoparticles: from fabrication to preclinical validation. J Biomed Mater Res A, 2010, 94(3): 712-719.
|
56. |
Roth CC, Mondalek FG, Kibar Y, et al. Bladder regeneration in a canine model using hyaluronic acid-poly (lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int, 2011, 108(1): 148-155.
|
57. |
Zhou HY, Zhang J, Yan RL, et al. Improving the antibacterial property of porcine small intestinal submucosa by nano-silver supplementation: a promising biological material to address the need for contaminated defect repair. Ann Surg, 2011, 253(5): 1033-1041.
|
58. |
Lee AJ, Chung WH , Kim DH, et al. Anterior cruciate ligament reconstruction in a rabbit model using canine small intestinal submucosa and autologous platelet-rich plasma. J Surg Res, 2012, 178(1): 206-215.
|