1. |
Wieland HA, Michaelis M, Kirschbaum BJ, et al. Osteoarthritis-an untreatable disease? Nat Rev Drug Discov, 2005, 4(4):331-344.
|
2. |
Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. PartⅡ. Arthritis Rheum, 2008, 58(1):26-35.
|
3. |
Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis:an update with relevance for cl inical practice. Lancet, 2011, 377(9783):2115-2126.
|
4. |
Heinegård D, Saxne T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol, 2011, 7(1):50-56.
|
5. |
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta, 2012, 1824(1):133-145.
|
6. |
Gao SG, Li KH, Zeng KB, et al. Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage, 2010, 18(1):82-87.
|
7. |
Honsawek S, Tanavalee A, Sakdinakiattikoon M, et al. Correlation of plasma and synovial fluid osteopontin with disease severity in knee osteoarthritis. Clin Biochem, 2009, 42(9):808-812.
|
8. |
Hasegawa M, Segawa T, Maeda M, et al. Thrombin-cleaved osteopontin levels in synovial fluid correlate with disease severity of knee osteoarthritis. J Rheumatol, 2011, 38(1):129-134.
|
9. |
Neuhold LA, Killar L, Zhao W, et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3(MMP-13) induces osteoarthritis in mice. J Clin Invest, 2001, 107(1):35-44.
|
10. |
Kevorkian L, Young DA, Darrah C, et al. Expression profil ing of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum, 2004, 50(1):131-141.
|
11. |
Little CB, Barai A, Burkhardt D, et al. Matrixmetalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum, 2009, 60(12):3723-3733.
|
12. |
Roach HI, Yamada N, Cheung KS, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum, 2005, 52(10):3110-3124.
|
13. |
Muddasani P, Norman JC, Ellman M, et al. Basic fibroblast growth factor activates the MAPK and NFkappaB pathways that converge on Elk-1 to control production of matrix metalloproteinase-13 by human adult articular chondrocytes. J Biol Chem, 2007, 282(43):31409-31421.
|
14. |
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases:role in arthritis. Front Biosci, 2006, 11:529-543.
|
15. |
Miwa HE, Gerken TA, Huynh TD, et al. Mammalian expression of full-length bovine aggrecan and link protein:formation of recombinant proteoglycan aggregates and analysis of proteolytic cleavage by ADAMTS-4 and MMP-13. Biochim Biophys Acta, 2006, 1760(3):472-486.
|
16. |
Mori N, Majima T, Iwasaki N, et al. The role of osteopontin in tendon tissue remodeling after denervation-induced mechanical stress deprivation. Matrix Biol, 2007, 26(1):42-53.
|
17. |
Berge G, Pettersen S, Grotterød I, et al. Osteopontin-an important downstream effector of S100A4-mediated invasion and metastasis. Int J Cancer, 2011, 129(4):780-790.
|
18. |
Matsui Y, Iwasaki N, Kon S, et al. Accelerated development of agingassociated and instabil ity-induced osteoarthritis in osteopontindeficient mice. Arthritis Rheum, 2009, 60(8):2362-2371.
|