Citation: DUANXin, LIWei, XIANGZhou. RESEARCH PROGRESS OF ANGIOGENESIS IN VASCULARIZED TISSUE ENGINEERED BONE. Chinese Journal of Reparative and Reconstructive Surgery, 2015, 29(2): 239-244. doi: 10.7507/1002-1892.20150050 Copy
1. | Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 2009, 30(12):2149-2163. |
2. | Chimutengwende-Gordon M, Khan WS. Advances in the use of stem cells and tissue engineering applications in bone repair. Curr Stem Cell Res Ther, 2012, 7(2):122-126. |
3. | Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis:the potential for engineering bone. Eur Cell Mater, 2008, 15:100-114. |
4. | Towler DA. The osteogenic-angiogenic interface:novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep, 2008, 6(2):67-71. |
5. | Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering:approaches for potential improvement. Tissue Eng Part B Rev, 2012, 18(5):363-382. |
6. | Santos MI, Reis RL. Vascularization in bone tissue engineering:physiology, current strategies, major hurdles and future challenges. Macromol Biosci, 2010, 10(1):12-27. |
7. | Khan WS, Longo UG, Adesida A, et al. Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int, 2012, 3(3):403170. |
8. | Manetti M, Guiducci S, Romano E, et al. Decreased expression of the endothelial cell-derived factor EGFL7 in systemic sclerosis:potential contribution to impaired angiogenesis and vasculogenesis. Arthritis Res Ther, 2013, 15(5):R165. |
9. | Toh H, Cao M, Daniels E, et al. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels:a novel mouse model. PLoS One, 2013, 8(5):e64989. |
10. | Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123. |
11. | Liu X, Zhang G, Hou C, et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells. Biomed Res Int, 2013, 12(12):854917. |
12. | 郝增涛, 冯卫, 郝廷, 等. BMSCs来源成骨细胞和内皮细胞复合壳聚糖-羟基磷灰石多孔支架构建血管化组织工程骨研究. 中国修复重建外科杂志, 2012, 26(4):489-494. |
13. | Ren L, Kang Y, Browne C, et al. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone, 2014, 7(64):173-182. |
14. | Kaigler D, Pagni G, Park CH, et al. Stem cell therapy for craniofacial bone regeneration:a randomized, controlled feasibility trial. Cell Transplant, 2013, 22(5):767-777. |
15. | Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther, 2011, 11(3):375-385. |
16. | Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol, 2013, 84(2):230-238. |
17. | Wenger A, Kowalewski N, Stahl A, et al. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs, 2005, 181(2):80-88. |
18. | Matsumoto T, Kuroda R, Mifune Y, et al. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone, 2008, 43(3):434-439. |
19. | Seong JM, Kim BC, Park JH, et al. Stem cells in bone tissue engineering. Biomed Mater, 2010, 5(60):062001. |
20. | Richardson MR, Yoder MC. Endothelial progenitor cells:quo vadis? J Mol Cell Cardiol, 2011, 50(2):266-272. |
21. | Li Q, Wang Z. Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis:an in vitro study. Arch Med Res, 2013, 44(7):504-513. |
22. | Keramaris NC, Kaptanis S, Moss HL, et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing. Curr Stem Cell Res Ther, 2012, 7(4):293-301. |
23. | Seebach C, Henrich D, Wilhelm K, et al. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant, 2012, 21(8):1667-1677. |
24. | Seebach C, Henrich D, Kahling C, et al. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A, 2010, 16(6):1961-1970. |
25. | Takebe T, Zhang RR, Koike H, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc, 2014, 9(2):396-409. |
26. | Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459):481-484. |
27. | Takase O, Yoshikawa M, Idei M, et al. The role of NF-κB signaling in the maintenance of pluripotency of human induced pluripotent stem cells. PLoS One, 2013, 8(2):e56399. |
28. | Ho R, Papp B, Hoffman JA, et al. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep, 2013, 3(6):2113-2126. |
29. | Gong H, Yan Y, Fang B, et al. Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells, 2014, 32(7):1759-1773. |
30. | Tan KS, Tamura K, Lai MI, et al. Molecular pathways governing development of vascular endothelial cells from ES/iPS cells. Stem Cell Rev, 2013, 9(5):586-598. |
31. | Kane NM, Xiao Q, Baker AH, et al. Pluripotent stem cell differentiation into vascular cells:a novel technology with promises for vascular re(generation). Pharmacol Ther, 2011, 129(1):29-49. |
32. | Zhang L, Xu Q. Stem/Progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol, 2014, 34(6):1114-1119. |
33. | Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123. |
34. | Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair:a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA, 2008, 105(32):11099-11104. |
35. | Saran U, Piperni SG, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys, 2014, 11(561):109-117. |
36. | Bry M, Kivela R, Leppanen VM, et al. Vascular Endothelial Growth Factor-B in Physiology and Disease. Physiol Rev, 2014, 94(2):779-794. |
37. | Alfaidy N, Hoffmann P, Boufettal H, et al. The Multiple Roles of EG-VEGF/PROK1 in Normal and Pathological Placental Angiogenesis. Biomed Res Int, 2014, 5(5):451906. |
38. | Koç A, Finkenzeller G, Elçin AE, et al. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts:In vitro and in vivo studies. J Biomater Appl, 2014, 29(5):748-760. |
39. | Ferretti C, Vozzi G, Falconi M, et al. Role of IGF1 and IGF1/VEGF on human mesenchymal stromal cells in bone healing:two sources and two fates. Tissue Eng Part A, 2014, 20(17-18):2473-2482. |
40. | Zhou Y, Guan X, Yu M, et al. Angiogenic/osteogenic response of BMMSCs on bone derived scaffold:effect of hypoxia and role of PI3K/Akt mediated VEGF/VEGFR pathway. Biotechnol J, 2014, 9(7):944-953. |
41. | Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123. |
42. | Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett, 2013, 328(1):18-26. |
43. | Hall K, Ran S. Regulation of tumor angiogenesis by the local environment. Front Biosci, 2010, 15(15):195-212. |
44. | Hou H, Zhang X, Tang T, et al. Enhancement of bone formation by genetically engineered bone marrow stromal cells expressing BMP-2, VEGF and angiopoietin-1. Biotechnol Lett, 2009, 31(8):1183-1189. |
45. | Nakasa T, Ishida O, Sunagawa T, et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res A, 2008, 85(4):1090-1095. |
46. | Gavalas NG, Liontos M, Trachana SP, et al. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci, 2013, 14(8):15885-15909. |
47. | Munoz-Chapuli R. Evolution of angiogenesis. Int J Dev Biol, 2011, 55(4-5):345-351. |
48. | Gothard D, Smith EL, Kanczler JM, et al. Tissue engineered bone using select growth factors:A comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater, 2014, 10(28):166-208. |
49. | Okada M, Yano K, Namikawa T, et al. Bone morphogenetic protein-2 retained in synthetic polymer/beta-tricalcium phosphate composite promotes hypertrophy of a vascularized long bone graft in rabbits. Plast Reconstr Surg, 2011, 127(1):98-106. |
50. | Yang P, Huang X, Shen J, et al. Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold. BMC Musculoskelet Disord, 2013, 14(14):318. |
51. | Cui Q, Dighe AS, Irvine JN. Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des, 2013, 19(19):3374-3383. |
52. | Guerrero J, Catros S, Derkaoui SM, et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater, 2013, 9(9):8200-8213. |
53. | Liu Y, Teoh SH, Chong MS, et al. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng Part A, 2013, 19(7-8):893-904. |
54. | Kim J, Kim HN, Lim KT, et al. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials, 2013, 34(30):7257-7268. |
55. | Zheng L, Yang J, Fan H, et al. Material-induced chondrogenic differentiation of mesenchymal stem cells is material-dependent. Exp Ther Med, 2014, 7(5):1147-1150. |
56. | Jung O, Hanken H, Smeets R, et al. Osteogenic Differentiation of Mesenchymal Stem Cells in Fibrin-Hydroxyapatite Matrix in a 3-Dimensional Mesh Scaffold. In Vivo, 2014, 28(4):477-482. |
57. | Klopper J, Lindenmaier W, Fiedler U, et al. High efficient adenoviral-mediated VEGF and Ang-1 gene delivery into osteogenically differentiated human mesenchymal stem cells. Microvasc Res, 2008, 75(1):83-90. |
58. | Chong AK, Ang AD, Goh JC, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg (Am), 2007, 89(1):74-81. |
59. | Ren W, Zhang R, Wu B, et al. Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model. J Inflamm Res, 2011, 3(4):29-38. |
60. | Viateau V, Bensidhoum M, Pélissier P, et al. Use of the induced membrane technique for bone tissue engineering purposes:animal studies. Orthop Clin North Am, 2010, 41(1):49-56. |
- 1. Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 2009, 30(12):2149-2163.
- 2. Chimutengwende-Gordon M, Khan WS. Advances in the use of stem cells and tissue engineering applications in bone repair. Curr Stem Cell Res Ther, 2012, 7(2):122-126.
- 3. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis:the potential for engineering bone. Eur Cell Mater, 2008, 15:100-114.
- 4. Towler DA. The osteogenic-angiogenic interface:novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep, 2008, 6(2):67-71.
- 5. Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering:approaches for potential improvement. Tissue Eng Part B Rev, 2012, 18(5):363-382.
- 6. Santos MI, Reis RL. Vascularization in bone tissue engineering:physiology, current strategies, major hurdles and future challenges. Macromol Biosci, 2010, 10(1):12-27.
- 7. Khan WS, Longo UG, Adesida A, et al. Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int, 2012, 3(3):403170.
- 8. Manetti M, Guiducci S, Romano E, et al. Decreased expression of the endothelial cell-derived factor EGFL7 in systemic sclerosis:potential contribution to impaired angiogenesis and vasculogenesis. Arthritis Res Ther, 2013, 15(5):R165.
- 9. Toh H, Cao M, Daniels E, et al. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels:a novel mouse model. PLoS One, 2013, 8(5):e64989.
- 10. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123.
- 11. Liu X, Zhang G, Hou C, et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells. Biomed Res Int, 2013, 12(12):854917.
- 12. 郝增涛, 冯卫, 郝廷, 等. BMSCs来源成骨细胞和内皮细胞复合壳聚糖-羟基磷灰石多孔支架构建血管化组织工程骨研究. 中国修复重建外科杂志, 2012, 26(4):489-494.
- 13. Ren L, Kang Y, Browne C, et al. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone, 2014, 7(64):173-182.
- 14. Kaigler D, Pagni G, Park CH, et al. Stem cell therapy for craniofacial bone regeneration:a randomized, controlled feasibility trial. Cell Transplant, 2013, 22(5):767-777.
- 15. Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther, 2011, 11(3):375-385.
- 16. Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol, 2013, 84(2):230-238.
- 17. Wenger A, Kowalewski N, Stahl A, et al. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs, 2005, 181(2):80-88.
- 18. Matsumoto T, Kuroda R, Mifune Y, et al. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone, 2008, 43(3):434-439.
- 19. Seong JM, Kim BC, Park JH, et al. Stem cells in bone tissue engineering. Biomed Mater, 2010, 5(60):062001.
- 20. Richardson MR, Yoder MC. Endothelial progenitor cells:quo vadis? J Mol Cell Cardiol, 2011, 50(2):266-272.
- 21. Li Q, Wang Z. Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis:an in vitro study. Arch Med Res, 2013, 44(7):504-513.
- 22. Keramaris NC, Kaptanis S, Moss HL, et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing. Curr Stem Cell Res Ther, 2012, 7(4):293-301.
- 23. Seebach C, Henrich D, Wilhelm K, et al. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant, 2012, 21(8):1667-1677.
- 24. Seebach C, Henrich D, Kahling C, et al. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A, 2010, 16(6):1961-1970.
- 25. Takebe T, Zhang RR, Koike H, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc, 2014, 9(2):396-409.
- 26. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459):481-484.
- 27. Takase O, Yoshikawa M, Idei M, et al. The role of NF-κB signaling in the maintenance of pluripotency of human induced pluripotent stem cells. PLoS One, 2013, 8(2):e56399.
- 28. Ho R, Papp B, Hoffman JA, et al. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep, 2013, 3(6):2113-2126.
- 29. Gong H, Yan Y, Fang B, et al. Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells, 2014, 32(7):1759-1773.
- 30. Tan KS, Tamura K, Lai MI, et al. Molecular pathways governing development of vascular endothelial cells from ES/iPS cells. Stem Cell Rev, 2013, 9(5):586-598.
- 31. Kane NM, Xiao Q, Baker AH, et al. Pluripotent stem cell differentiation into vascular cells:a novel technology with promises for vascular re(generation). Pharmacol Ther, 2011, 129(1):29-49.
- 32. Zhang L, Xu Q. Stem/Progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol, 2014, 34(6):1114-1119.
- 33. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123.
- 34. Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair:a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA, 2008, 105(32):11099-11104.
- 35. Saran U, Piperni SG, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys, 2014, 11(561):109-117.
- 36. Bry M, Kivela R, Leppanen VM, et al. Vascular Endothelial Growth Factor-B in Physiology and Disease. Physiol Rev, 2014, 94(2):779-794.
- 37. Alfaidy N, Hoffmann P, Boufettal H, et al. The Multiple Roles of EG-VEGF/PROK1 in Normal and Pathological Placental Angiogenesis. Biomed Res Int, 2014, 5(5):451906.
- 38. Koç A, Finkenzeller G, Elçin AE, et al. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts:In vitro and in vivo studies. J Biomater Appl, 2014, 29(5):748-760.
- 39. Ferretti C, Vozzi G, Falconi M, et al. Role of IGF1 and IGF1/VEGF on human mesenchymal stromal cells in bone healing:two sources and two fates. Tissue Eng Part A, 2014, 20(17-18):2473-2482.
- 40. Zhou Y, Guan X, Yu M, et al. Angiogenic/osteogenic response of BMMSCs on bone derived scaffold:effect of hypoxia and role of PI3K/Akt mediated VEGF/VEGFR pathway. Biotechnol J, 2014, 9(7):944-953.
- 41. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123.
- 42. Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett, 2013, 328(1):18-26.
- 43. Hall K, Ran S. Regulation of tumor angiogenesis by the local environment. Front Biosci, 2010, 15(15):195-212.
- 44. Hou H, Zhang X, Tang T, et al. Enhancement of bone formation by genetically engineered bone marrow stromal cells expressing BMP-2, VEGF and angiopoietin-1. Biotechnol Lett, 2009, 31(8):1183-1189.
- 45. Nakasa T, Ishida O, Sunagawa T, et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res A, 2008, 85(4):1090-1095.
- 46. Gavalas NG, Liontos M, Trachana SP, et al. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci, 2013, 14(8):15885-15909.
- 47. Munoz-Chapuli R. Evolution of angiogenesis. Int J Dev Biol, 2011, 55(4-5):345-351.
- 48. Gothard D, Smith EL, Kanczler JM, et al. Tissue engineered bone using select growth factors:A comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater, 2014, 10(28):166-208.
- 49. Okada M, Yano K, Namikawa T, et al. Bone morphogenetic protein-2 retained in synthetic polymer/beta-tricalcium phosphate composite promotes hypertrophy of a vascularized long bone graft in rabbits. Plast Reconstr Surg, 2011, 127(1):98-106.
- 50. Yang P, Huang X, Shen J, et al. Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold. BMC Musculoskelet Disord, 2013, 14(14):318.
- 51. Cui Q, Dighe AS, Irvine JN. Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des, 2013, 19(19):3374-3383.
- 52. Guerrero J, Catros S, Derkaoui SM, et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater, 2013, 9(9):8200-8213.
- 53. Liu Y, Teoh SH, Chong MS, et al. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng Part A, 2013, 19(7-8):893-904.
- 54. Kim J, Kim HN, Lim KT, et al. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials, 2013, 34(30):7257-7268.
- 55. Zheng L, Yang J, Fan H, et al. Material-induced chondrogenic differentiation of mesenchymal stem cells is material-dependent. Exp Ther Med, 2014, 7(5):1147-1150.
- 56. Jung O, Hanken H, Smeets R, et al. Osteogenic Differentiation of Mesenchymal Stem Cells in Fibrin-Hydroxyapatite Matrix in a 3-Dimensional Mesh Scaffold. In Vivo, 2014, 28(4):477-482.
- 57. Klopper J, Lindenmaier W, Fiedler U, et al. High efficient adenoviral-mediated VEGF and Ang-1 gene delivery into osteogenically differentiated human mesenchymal stem cells. Microvasc Res, 2008, 75(1):83-90.
- 58. Chong AK, Ang AD, Goh JC, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg (Am), 2007, 89(1):74-81.
- 59. Ren W, Zhang R, Wu B, et al. Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model. J Inflamm Res, 2011, 3(4):29-38.
- 60. Viateau V, Bensidhoum M, Pélissier P, et al. Use of the induced membrane technique for bone tissue engineering purposes:animal studies. Orthop Clin North Am, 2010, 41(1):49-56.