1. |
Galeano M, Altavilla D, Bitto A, et al. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med, 2006, 34(4):1139-1146.
|
2. |
Triller C, Huljev D, Planinsek Rucigaj T. Modern wound dressings. Acta Med Croatica, 2013, 67 Suppl 1:81-87.
|
3. |
Balakrishnan B, Mohanty M, Umashankar PR, et al. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005, 26(32):6335-6342.
|
4. |
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci, 2006, 6(8):623-633.
|
5. |
Raof NA, Raja WK, Castracane J, et al. Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells. Biomaterials, 2011, 32(17):4130-4139.
|
6. |
Wang L, Shelton RM, Cooper PR, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 2003, 24(20):3475-3481.
|
7. |
Kulseng B, Skjåk-Braek G, Følling I, et al. TNF production from peripheral blood mononuclear cells in diabetic patients after stimulation with alginate and lipopolysaccharide. Scand J Immunol, 1996, 43(3):335-340.
|
8. |
Kuijpers AJ, van Wachem PB, van Luyn MJ, et al. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Releas, 2000, 67(2-3):323-336.
|
9. |
Bouhadir KH, Alsberg E, Mooney DJ. Hydrogels for combination delivery of antineoplastic agents. Biomaterials, 2001, 22(19):2625-2633.
|
10. |
Bouhadir KH, Lee KY, Alsberg E, et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog, 2001, 17(5):945-950.
|
11. |
McGuckin CP, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell proliferation, 2005, 38(4):245-255.
|
12. |
Sabapathy V, Sundaram B, V M S, et al. Human Wharton's jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One, 2014, 9(4):e93726.
|
13. |
Arno AI, Amini-Nik S, Blit PH, et al. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther, 2014, 5(1):28.
|
14. |
Shakespeare P. Burn wound healing and skin substitutes. Burns, 2001, 27(5):517-522.
|
15. |
Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110): 920-926.
|
16. |
Magyar JP, Nemir M, Ehler E, et al. Mass production of embryoid bodies in microbeads. Ann N Y Acad Sci, 2001, 944:135-143.
|
17. |
Oca-Cossio J, Simpson NE, Han Z, et al. Effects of alginate encapsulation on mitochondrial activity. J Mater Sci Mater Med, 2005, 16(6):521-524.
|
18. |
刘杨, 任力, 季培红, 等. 海藻酸钠的提纯及海藻酸钙多孔支架的 制备. 华南理工大学学报:自然科学版, 2012, 40(7):142-147.
|
19. |
Newman RE, Yoo D, LeRoux MA, et al. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets, 2009, 8(2):110-123.
|
20. |
Yuan Y, Sin WY, Xue B, et al. Novel alginate three-dimensional static and rotating culture systems for effective ex vivo amplification of human cord blood hematopoietic stem cells and in vivo functional analysis of amplified cells in NOD/SCID mice. Transfusion, 2013, 53(9):2001-2011.
|
21. |
Shohara R, Yamamoto A, Takikawa S, et al. Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms. Cytotherapy, 2012, 14(10):1171-1181.
|