1. |
Kurzyk A. Agiogenesis-possibilities, problems and perspectives. Postepy Biochem, 2015, 61(1):25-34.
|
2. |
Autiero M, De Smet F, Claes F, et al. Role of neural guidance signals in blood vessel navigation. Cardiovasc Res, 2005, 65(3):629-638.
|
3. |
Yang XT, Bi YY, Feng DF. From the vascular microenvironment to neurogenesis. Brain Res Bull, 2011, 84(1):1-7.
|
4. |
Hey-Cunningham AJ, Peters KM, Zevallos HB, et al. Angiogenesis, lymphangiogenesis and neurogenesis in endometriosis. Front Biosci (Elite Ed), 2013, 5:1033-1056.
|
5. |
Benedito R, Rocha SF, Marina W, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signaling. Nature, 2012, 484(7392):110-114.
|
6. |
Siekmann AF, Affolter M, Belting HG. The tip cell concept 10 years after:new players tune in for a common theme. Exp Cell Res, 2013, 319(9):1255-1263.
|
7. |
Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052):1707-1710.
|
8. |
Inoue T, Sugiyama M, Hattori H, et al. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhances recovery of focal cerebral ischemia in rats. Tissue Eng Part A, 2013, 19(1-2):24-29.
|
9. |
Zan L, Wu H, Jiang J, et al. Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia:correlations with angiogenesis and cerebral edema. Neurochem Int, 2011, 58(8):872-879.
|
10. |
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302):964-967.
|
11. |
Laurenzana A, Fibbi G, Margheri F, et al. Endothelial progenitor cells in sprouting angiogenesis:proteases pave the way. Curr Mol Med, 2015, 15(7):606-620.
|
12. |
Garcia KO, Omellas FL, Martin PK, et al. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer's disease. Front Aging Neurosci, 2014, 6:30.
|
13. |
Chen J, Wang J, Chen D, et al. Evaluation of characteristics of CD44+CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol, 2013, 14:7.
|
14. |
Randi AM, Laffan MA, Starke RD. Von Willebrand factor, angiodysplasia and angiogenesis. Mediterr J Hematol Infect Dis, 2013, 5(1):e2013060.
|
15. |
He YQ, Li Y, Wang XY, et al. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis. Exp Cell Res, 2014, 320(2):354-364.
|
16. |
Kim KI, Park S, Im GI. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials, 2014, 35(17):4792-4804.
|
17. |
Zhao X, Liu L, Wang FK, et al. Coculture of vascular endothelial cells and adipose-derived stem cells as a source for bone engineering. Ann Plast Surg, 2012, 69(1):91-98.
|
18. |
Loibl M, Binder A, Herrmann M, et al. Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int, 2014, 2014:395781.
|
19. |
Shibuya M. VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul), 2014, 22(1):1-9.
|
20. |
Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis, 2010, 6(2):107-114.
|
21. |
Ruhrberg C, Gerhardt H, Golding M, et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev, 2002, 16(20):2684-2698.
|
22. |
Gerhardt H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 2008, 4(4):241-246.
|
23. |
Gelfand MV, Hong S, Gu C. Guidance from above:common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol, 2009, 19(3):99-110.
|
24. |
Saleh A, Stathopoulou MG, Dadé S, et al. Angiogenesis related genes NOS3, CD14, MMP3 and IL4R are associated to VEGF gene expression and circulating levels in healthy adults. BMC Med Genet, 2015, 16:90.
|
25. |
Akino T, Han X, Nakayama H, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res, 2014, 74(14):3716-3726.
|
26. |
Castets M, Mehlen P. Netrin-1 role in angiogenesis:to be or not to be a proangiogenic factor? Cell Cycle, 2010, 9(8):1466-1471.
|
27. |
Cheng X, Wang Z, Yang J, et al. Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol Res, 2011, 33(7):675-680.
|
28. |
Yang S, Xu L, Yang T, et al. High-mobility group box-1 and its role in angiogenesis. J Leukoc Biol, 2014, 95(4):563-574.
|
29. |
Fagiani E, Lorentz P, Kopfstein L, et al. Angiopoietin-1 and -2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res, 2011, 71(17):5717-5727.
|
30. |
Zhao Y, Li Z, Wang R, et al. Angiopoietin 1 counteracts vascular endothelial growth factor-induced blood-brain barrier permeability and alleviates ischemic injury in the early stages of transient focal cerebral ischemia in rats. Neurol Res, 2010, 32(7):748-755.
|