1. |
魏均强,蔡谞,王岩,等.人工关节无菌性松动的发生和防治.中国修复重建外科杂志, 2010, 24(3):296-300.
|
2. |
Gallo J, Vaculova J, Goodman SB, et al. Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta Biomater, 2014, 10(6):2354-2366.
|
3. |
Takagi M, Konttinen YT, Santavirta S, et al. Extracellular matrix metalloproteinases around loose total hip prostheses. Acta Orthop Scand, 1994, 65(3):281-286.
|
4. |
Hirose S, Otsuka H, Morishima T, et al. Outcomes of Charnley total hip arthroplasty using improved cementing with so-called second-and third-generation techniques. J Orthop Sci, 2012, 17(2):118-123.
|
5. |
Aghayev E, Teuscher R, Neukamp M, et al. The course of radiographic loosening, pain and functional outcome around the first revision of a total hip arthroplasty. BMC Musculoskelet Disord, 2013, 14:167.
|
6. |
孙燕萍,杜湘珂,陈雷.人工髋关节置换术后常见并发症的X线表现.中华放射学杂志, 2003, 37(4):352-355.
|
7. |
Gruen TA, McNiece GM, Amstutz HC. "Modes of failure" of cemented stem-type femoral components:a radiographic analysis of loosening. Clin Orthop Relat Res, 1979, (141):17-27.
|
8. |
DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res, 1976, (121):20-32.
|
9. |
Doorn PF, Mirra JM, Campbell PA, et al. Tissue reaction to metal on metal total hip prostheses. Clin Orthop Relat Res, 1996, (329 Suppl):S187-205.
|
10. |
Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat, 1995, 36(2):169-180.
|
11. |
Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials, 2005, 26(11):1271-1286.
|
12. |
Saran U, Gemini Piperni S, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys, 2014, 561:109-117.
|
13. |
Jiranek WA, Machado M, Jasty M, et al. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg (Am), 1993, 75(6):863-879.
|
14. |
Holt G, Murnaghan C, Reilly J, et al. The biology of aseptic osteolysis. Clin Orthop Relat Res, 2007, 460(7):240-252.
|
15. |
Spanogle JP, Miyanishi K, Ma T, et al. Comparison of VEGF-producing cells in periprosthetic osteolysis. Biomaterials, 2006, 27(21):3882-3887.
|
16. |
Santavirta S, Ceponis A, Solovieva SA, et al. Periprosthetic microvasculature in loosening of total hip replacement. Arch Orthop Trauma Surg, 1996, 115(5):286-289.
|
17. |
漆启华,戴闽,董谢平.细胞外基质金属蛋白酶诱导因子及基质金属蛋白酶9在镁硅玉人工关节假体无菌性松动中的作用.中国修复重建外科杂志, 2013, 27(10):1175-1180.
|
18. |
Jell GM, Al-Saffar N. Does a pro-angiogenic state exist in the bone-implant interface of aseptically loosened joint prosthesis. J Mater Sci Mater Med, 2001, 12(10-12):1069-1073.
|
19. |
Waris V, Sillat T, Waris E, et al. Role and regulation of VEGF and its receptors 1 and 2 in the aseptic loosening of total hip implants. J Orthop Res, 2012, 30(11):1830-1836.
|
20. |
Taylor PC, Sivakumar B. Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol, 2005, 17(3):293-298.
|
21. |
Wagner M, Hermanns I, Bittinger F, et al. Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Physiol, 1999, 277(5 Pt 1):L1026-1033.
|
22. |
Nich C, Goodman SB. Role of macrophages in the biological reaction to wear debris from joint replacements. J Long Term Eff Med Implants, 2014, 24(4):259-265.
|
23. |
Syggelos SA, Aletras AJ, Smirlaki I, et al. Extracellular matrix degradation and tissue remodeling in periprosthetic loosening and osteolysis:focus on matrix metalloproteinases, their endogenous tissue inhibitors, and the proteasome. Biomed Res Int, 2013, (2013):230805.
|
24. |
戴闽,钟艳春,宗凌,等. VEGF抗体抑制磨损颗粒诱导骨溶解的实验研究.中国修复重建外科杂志, 2012, 26(6):647-651.
|